Nursing Care and Pathophysiology of Diabetic Ketoacidosis (DKA)

You're watching a preview. 300,000+ students are watching the full lesson.
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For Nursing Care and Pathophysiology of Diabetic Ketoacidosis (DKA)

DKA Treatment (Mnemonic)
DKA Pathochart (Cheatsheet)
DKA vs HHNS (Cheatsheet)
Symptoms of Diabetes Mellitus (Image)
Treatment for DKA and HHNS (Image)
140 Must Know Meds (Book)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Overview

  1. Severe Hyperglycemia with Ketoacidosis

Pathophysiology:

Diabetic Ketoacidosis (DKA) occurs with severe hyperglycemia and ketoacidosis. This occurs because the blood sugar is so elevated and there is not enough insulin to take the sugar to the cell. The cell needs energy. Since the cell can not get the energy from the sugar (because no insulin) it uses fatty acids for energy. As the body burns up fatty acids to produce energy, it produces a by-product. The by-product of this process is ketones which is acidic. As acids build up this will cause metabolic acidosis. As the ketones build up in the body the patient will spill ketones into the urine showing positive ketones in the urine. The body will do Kussmaul respirations to try and breathe out the CO2 and get rid of the acid.

Nursing Points

General

  1. Type I Diabetes Mellitus – Acute Exacerbation
    1. Body has NO insulin→ can’t get glucose into cell → breaks down fatty acids for energy → Ketones (Acids)
  2. Sudden onset → stress, infection

Assessment

  1. Ketoacidosis
    1. Acidosis (pH <7.35, HCO3- <22)
    2. Ketones in Urine
    3. Fruity Breath (due to ketones)
    4. Kussmaul Respirations
      1. Trying to breathe off Co2 to compensate for acidosis
      2. Patients can tire easily
    5. Hyperkalemia
      1. K+ leaves the cell to compensate for acidemia
  2. Hyperglycemia
    1. Blood Glucose 400-600 mg/dL
    2. Severe Dehydration
      1. Osmotic Diuresis
      2. Polyuria
    3. ↑ BUN, Creatinine
    4. Altered LOC (cellular dehydration)

Therapeutic Management

  1. First nursing action = begin fluid replacement and check electrolytes
  2. Treatment Priority = correct acidosis
    1. Insulin therapy → so the body can STOP breakdown of fatty acids
    2. Without insulin, DKA will continue to progress, despite fluid replacement
    3. Insulin therapy continues until anion gap acidosis has fully resolved
  3. Continue replacing fluids as needed
    1. Helps manage the dehydration caused by the hyperosmolarity
  4. Monitor neurological status
  5. Monitor and treat electrolyte imbalances

Nursing Concepts

  1. Acid-Base Balance
    1. Monitor Arterial Blood Gases and Anion Gap
    2. Monitor Respiratory status
  2. Glucose Metabolism
    1. Blood sugar checks q1h
    2. Intensive insulin therapy (IV – Regular Insulin)
      1. May continue even after blood sugar down (goal = correct acidosis)
    3. Evaluate urine for glucose/ketones
  3. Fluid & Electrolytes
    1. Give IV Fluids (IVF)
    2. Monitor electrolytes & replace as needed
    3. Potassium may ↓ with insulin therapy
      1. May add KCl to IVF

Patient Education

  1. Continue to monitor blood sugars and take insulin even on a sick day
  2. Do not skip doses of insulin
  3. Signs and symptoms of hyperglycemia (before DKA) to alert to a problem earlier

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

ADPIE Related Lessons

Related Nursing Process (ADPIE) Lessons for Nursing Care and Pathophysiology of Diabetic Ketoacidosis (DKA)

Transcript

Hey guys, my name is Brad and welcome to nursing.com. And in today’s video, we’re going to be discussing diabetic ketoacidosis, also known as DKA, a lot of the pathophysiology behind it, some signs and symptoms, as well as how we’re going to treat our patient. Let’s dive in. 

So in DKA, what we’re essentially looking at here is too much sugar and too much acid, right? We call it diabetic ketoacidosis. Okay. Another way to think about it is diabetes causing acidosis. That’s essentially exactly what we have here. We have an acidosis which is brought on by diabetes, right? Remembering that diabetes is too much blood glucose. So we’re having too much sugar and this, through the release and break down of something called ketones, ends up causing acidosis. 

So let’s actually discuss some of the pathophysiology of diabetes. Well, the first thing to know is that insulin is produced in the pancreas, right? From something in the pancreas called a beta cell. Beta cell is directly responsible for releasing insulin from the pancreas. Okay. And in instances where patients have diabetes, we basically have a breakdown in our beta cells and issues with insulin production. So as a result, we don’t have enough insulin being made. Now, why is this important? So here’s the way that I like to think about it. Right? Think about the cell of our body being a club, a nightclub and insulin is a bouncer at the front door, sitting on the surface of that cell, sitting outside of that nightclub. The only way that our friend glucose can get into the cell or get into the club is through this bouncer, insulin. Insulin is directly responsible for allowing glucose into the cell. Now, what would happen in cases such as diabetes, if insulin were not getting produced, if insulin called into work sick that night, and he’s not showing up at the club, he can’t allow glucose into the cell. If there’s no insulin on the surface of that cell glucose cannot get into the cell. And as a result, glucose is just going to build up in our vessels in our blood. And this is hyperglycemia. Now, what’s important to know here is two different kinds of concepts that would actually normally occur in a normally functioning pancreas, a person who does not have diabetes. Basically, how is glucose stored in instances of hyperglycemia, where we have too much blood sugar and how is glucose released into the blood in times of hypoglycemia, where we don’t have enough glucose in the blood. So there are two different things, right? The first one here is something called gluconeogenesis. Okay. This is essentially, in instances where we have hyperglycemia, where we have too much sugar in the blood, we’re going to lock some of this glucose away, right? We’re going to lock it away, in a glucose reserve, in a glucose storage container called glycogen. And then there is a second process called glycogenolysis. Okay. We already said that we’re, we’re storing glucose in these storage containers called glycogen. In glycogenolysis, we’re breaking open those storage containers, right? All in an attempt to release that glucose into the bloodstream. This is done by breaking down the glycogen reserves in the liver, breaking down the glycogen reserves in those fatty cells in order to release extra glucose into the bloodstream. 

So let’s dive into the pathophysiology of the ketoacidosis component of DKA, right? What exactly is occurring here? A patient has diabetes. So we have low insulin production. We have no insulin release. As a result, the insulin is not there on the surface of the cell, like a bouncer, allowing glucose into the cell. Therefore, glucose is going to build up in that bloodstream, as we’ve already mentioned, resulting in hyperglycemia. Okay. We got that. If we have no insulin allowing glucose into the cell and we have excess glucose building up in the bloodstream, instead of going to the cell, it’s building up in the bloodstream, how does our brain interpret this, right? How’s our brain interpreting this? Well, our brain is thinking, why the heck are these cells not getting glucose, right? Why is there no glucose in these cells? Basically, the brain is saying our cells are being starved of glucose although we have hyperglycemia. Although we have an extreme excess amount of glucose in our blood, we’re not getting that glucose into those cells where it needs to go. The brain says, wait a minute, our cells are starving for glucose, they need more glucose. And so what does the body do to compensate? It attempts to release more glucose. It’s saying, Hey, we don’t have, we must not have, enough glucose in our blood. Let’s release more so that these starving cells can get the glucose they need. And how does our body release the glucose from those glycogen storages, remember, it does it through glycogenolysis right? The actual breakdown of those glycogen storages. So what occurs, as I mentioned in the previous slide, we’re going to break down the glycogen reserves in the liver. We’re also going to break down the glycogen reserves in those fatty cells. Now, the problem is, whenever we actually break down one of these fatty cells where glycogen is being stored, sure, we’re going to release glucose, right? That’s what our brain is telling our body to do. A by-product of the glycogenolysis that occurs in these fatty cells is the release of ketones as well. Now, similar to CO2, if you have seen that video, CO2 is an acid. Okay? So are ketones, they are also an acid. This is important. As we mentioned in our ABGs video, we have a very narrow pH range, a normal pH range of 7.35 to 7.45. If we have an excess of release of ketones into the blood, this is going to drive our pH to become more acidic, therefore becoming less than 7.35. And we will recall from our ABGs video that because that range is so narrow, any alterations going below 7.35 or above 7.45 can lead to cellular destruction. It’s incredibly problematic in patients. And this is what the entire issue with the cascade of symptoms with diabetic ketoacidosis is.  Again, we have too much blood glucose in our blood because we don’t have insulin. It can’t get to the cells. The cells are starving. The brain says, Hey, our cells are starving, we need to release more blood glucose. Glycogenolysis occurs. The release of glucose occurs leading to further hyperglycemia. Oh, and by the way, here’s some ketones on top, releasing those acidic ketones into the blood leading to acidosis. 

So regarding some assessment findings of DKA, patients are going to have fruity breath. That’s a hallmark sign of patients who have DKA. Ketones because of that glycogenolysis, right? Dehydration can also occur, right? Also altered levels of consciousness, right? Our pH is low, less than 7.35, we are acidotic, we have cellular alteration in our blood pH. We can have altered levels of consciousness. We’re also going to see, again, hyperglycemia, typically a capillary blood glucose greater than 250. We’re also going to be doing, regarding our assessment, Q1 hour glucose checks, as well as frequent neuro checks related to that altered levels of consciousness. And we’re also going to be checking Q2 hour BMPs. We’re basically going to be looking at the amount of bicarbonate that their body is producing, wanting to make sure as we treat and correct their acidosis, we’re wanting to make sure that their bicarbonate levels are getting back to a normal range, as well as, again, you’ll remember from our ABGs video, bicarbonate is released to neutralize excessive acids and to restore a more normal blood pH level. 

So how are we going to treat the patient in DKA? The first thing is we’re definitely going to use regular IV insulin. Again, we are insulin deficient in a patient who has diabetes, first of all, much less than one in DKA. We need insulin, right? So that, that excessive glucose in the bloodstream can go back into the cells where it belongs, but we’re going to be treating with IV insulin. We’re also going to be seeing hypotonic dextrose solutions. So imagine as you’re treating with IV insulin, patients blood glucose is to drop. And sometimes it can drop rapidly patients who are sitting there with a blood glucose of 400 for instance, if you drop them from 400 to 200, although 200 is still considered greatly hyperglycemic, you’re going to drop them too quickly. So one of the ways that we treat that is by using a hypotonic dextrose containing solution, it would be something like D5W (5% Dextrose in Water) or D5 ½ NS (5% Dextrose and 0.45 Sodium Chloride).  The entire idea being that although we’re treating hyperglycemia with regular IV insulin, we don’t want their blood glucose to drop too rapidly as this is also dangerous. So we’re going to administer at a particular rate, some dextrose containing fluids to prevent their blood glucose from dropping too rapidly. Something else that’s also important to know is, not only is that insulin on that cell, you know, a bouncer to allow glucose in, also as a by-product insulin also allows potassium to go into the cells as well. Right? So what can actually occur as you’re administering insulin is you can have a depletion of your potassium levels. All of the potassium that was inside of your blood vessel is now going into the cell. And as a result, you can have hypokalemia. So we may end up seeing some electrolyte repletion being given as well. 

And so to summarize some of our key points with DKA, remember in diabetic ketoacidosis, there’s too much sugar and there’s too much acid, right? Hyperglycemia resulting in ketoacidosis. This is why we call it diabetes causing acidosis. Also make sure that you’re familiar with the normal physiology that normally occurs, that fine balance of insulin production as well as glucose allocation, right? Through two different ways, right, either gluconeogenesis or glycogenolysis. Remember how those two work together to maintain that fine balance of blood glucose. And then taking that knowledge and applying it to the pathophysiology associated with DKA. Make sure that you’re familiar with the different assessment findings and understanding that they all come back to the fact that we do not have enough insulin being produced. And we have an abundant production of glucose within the blood, as well as the release of ketones and all of the therapeutic management that we just discussed.

Guys, that was diabetic ketoacidosis. And now, you know, I hope that you guys go out there and be your best selves today. And as always, happy nursing.

 

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Study Plan for Study Skills, Test Taking for the NCLEX® Using Med-Surg (Lewis 10th ed.) designed for Westmoreland County Community College

Concepts Covered:

  • Concepts of Population Health
  • Factors Influencing Community Health
  • Community Health Overview
  • Substance Abuse Disorders
  • Upper GI Disorders
  • Renal Disorders
  • Newborn Care
  • Integumentary Disorders
  • Tissues and Glands
  • Central Nervous System Disorders – Brain
  • Digestive System
  • Urinary Disorders
  • Urinary System
  • Musculoskeletal Trauma
  • Concepts of Mental Health
  • Health & Stress
  • Developmental Theories
  • Fundamentals of Emergency Nursing
  • Communication
  • Basics of NCLEX
  • Test Taking Strategies
  • Prioritization
  • Delegation
  • Emotions and Motivation
  • Integumentary Disorders
  • Legal and Ethical Issues
  • Basic
  • Preoperative Nursing
  • Labor and Delivery
  • Fetal Development
  • Newborn Complications
  • Postpartum Complications
  • Postpartum Care
  • Labor Complications
  • Pregnancy Risks
  • Prenatal Concepts
  • Circulatory System
  • Cardiac Disorders
  • Emergency Care of the Cardiac Patient
  • Vascular Disorders
  • Shock
  • Postoperative Nursing
  • Intraoperative Nursing
  • Oncology Disorders
  • Neurological Emergencies
  • Respiratory Disorders
  • Female Reproductive Disorders
  • Acute & Chronic Renal Disorders
  • Liver & Gallbladder Disorders
  • Lower GI Disorders
  • Disorders of Pancreas
  • Disorders of the Thyroid & Parathyroid Glands
  • Disorders of the Adrenal Gland
  • Disorders of the Posterior Pituitary Gland
  • Immunological Disorders
  • Hematologic Disorders
  • EENT Disorders
  • Integumentary Important Points
  • Musculoskeletal Disorders
  • Emergency Care of the Neurological Patient
  • Peripheral Nervous System Disorders
  • Central Nervous System Disorders – Spinal Cord
  • Neurologic and Cognitive Disorders
  • Eating Disorders
  • Noninfectious Respiratory Disorder
  • Respiratory Emergencies
  • Infectious Respiratory Disorder
  • Psychological Emergencies
  • Trauma-Stress Disorders
  • Personality Disorders
  • Cognitive Disorders
  • Bipolar Disorders
  • Depressive Disorders
  • Psychotic Disorders
  • Anxiety Disorders
  • Somatoform Disorders
  • Infectious Disease Disorders
  • Musculoskeletal Disorders
  • Renal and Urinary Disorders
  • Cardiovascular Disorders
  • EENT Disorders
  • Gastrointestinal Disorders
  • Hematologic Disorders
  • Oncologic Disorders
  • Endocrine and Metabolic Disorders
  • Childhood Growth and Development
  • Adulthood Growth and Development
  • Medication Administration
  • Nervous System
  • Dosage Calculations
  • Learning Pharmacology
  • Prefixes
  • Suffixes

Study Plan Lessons

Communicable Diseases
Disasters & Bioterrorism
Cultural Care
Environmental Health
Technology & Informatics
Epidemiology
Health Promotion & Disease Prevention
Head to Toe Nursing Assessment (Physical Exam)
Enteral & Parenteral Nutrition (Diet, TPN)
Specialty Diets (Nutrition)
Blood Glucose Monitoring
Intake and Output (I&O)
Hygiene
Pain and Nonpharmacological Comfort Measures
Bowel Elimination
Urinary Elimination
Complications of Immobility
Patient Positioning
Defense Mechanisms
Overview of Developmental Theories
Abuse
Therapeutic Communication
Overview of the Nursing Process
Triage
Prioritization
Delegation
Maslow’s Hierarchy of Needs in Nursing
Isolation Precaution Types (PPE)
Fall and Injury Prevention
Fire and Electrical Safety
Brief CPR (Cardiopulmonary Resuscitation) Overview
HIPAA
Advance Directives
Legal Considerations
Process of Labor
Fetal Circulation
Fetal Environment
Newborn of HIV+ Mother
Hyperbilirubinemia (Jaundice)
Transient Tachypnea of Newborn
Meconium Aspiration
Babies by Term
Newborn Reflexes
Body System Assessments
Newborn Physical Exam
Postpartum Hemorrhage (PPH)
Mastitis
Initial Care of the Newborn (APGAR)
Breastfeeding
Postpartum Discomforts
Postpartum Physiological Maternal Changes
Dystocia
Precipitous Labor
Preterm Labor
Abruptio Placentae (Placental abruption)
Placenta Previa
Prolapsed Umbilical Cord
Fetal Heart Monitoring (FHM)
Leopold Maneuvers
Mechanisms of Labor
Fetal Development
Infections in Pregnancy
Preeclampsia: Signs, Symptoms, Nursing Care, and Magnesium Sulfate
Gestational HTN (Hypertension)
Hydatidiform Mole (Molar pregnancy)
Ectopic Pregnancy
Disseminated Intravascular Coagulation (DIC)
Gestational Diabetes (GDM)
Nutrition in Pregnancy
Chorioamnionitis
Antepartum Testing
Discomforts of Pregnancy
Physiological Changes
Maternal Risk Factors
Fundal Height Assessment for Nurses
Gravidity and Parity (G&Ps, GTPAL)
Gestation & Nägele’s Rule: Estimating Due Dates
Family Planning & Contraception
Menstrual Cycle
Hemodynamics
Normal Sinus Rhythm
Performing Cardiac (Heart) Monitoring
Preload and Afterload
Sinus Bradycardia
Sinus Tachycardia
Atrial Fibrillation (A Fib)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Nursing Care and Pathophysiology for Heart Failure (CHF)
Nursing Care and Pathophysiology of Angina
Pacemakers
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Distributive Shock
Discharge (DC) Teaching After Surgery
Postoperative (Postop) Complications
Post-Anesthesia Recovery
Malignant Hyperthermia
Moderate Sedation
Local Anesthesia
Preoperative (Preop)Assessment
General Anesthesia
Preoperative (Preop) Nursing Priorities
Preoperative (Preop) Education
Informed Consent
Biopsy
Ultrasound
Echocardiogram (Cardiac Echo)
Cardiovascular Angiography
Cerebral Angiography
Magnetic Resonance Imaging (MRI)
X-Ray (Xray)
Computed Tomography (CT)
Nursing Care and Pathophysiology for Menopause
Nursing Care and Pathophysiology for Endometriosis
Nursing Care and Pathophysiology for Pelvic Inflammatory Disease (PID)
Dialysis & Other Renal Points
Nursing Care and Pathophysiology of Chronic Kidney (Renal) Disease (CKD)
Nursing Care and Pathophysiology of Urinary Tract Infection (UTI)
Nursing Care and Pathophysiology of Glomerulonephritis
Nursing Care and Pathophysiology for Cirrhosis (Liver Disease, Hepatic encephalopathy, Portal Hypertension, Esophageal Varices)
Nursing Care and Pathophysiology of Acute Kidney (Renal) Injury (AKI)
Nursing Care and Pathophysiology for Hepatitis (Liver Disease)
Nursing Care and Pathophysiology for Cholecystitis
Nursing Care and Pathophysiology for Crohn’s Disease
Nursing Care and Pathophysiology for Ulcerative Colitis(UC)
Nursing Care and Pathophysiology for Inflammatory Bowel Disease (IBD)
Nursing Care and Pathophysiology for Appendicitis
Nursing Care and Pathophysiology for Peptic Ulcer Disease (PUD)
Nursing Care and Pathophysiology for Pancreatitis
Hyperglycaemic Hyperosmolar Non-ketotic syndrome (HHNS)
Nursing Care and Pathophysiology of Diabetic Ketoacidosis (DKA)
Diabetes Management
Nursing Care and Pathophysiology of Diabetes Mellitus (DM)
Nursing Care and Pathophysiology for Hypothyroidism
Nursing Care and Pathophysiology for Hyperthyroidism
Nursing Care and Pathophysiology for Cushings Syndrome
Nursing Care and Pathophysiology for SIADH (Syndrome of Inappropriate antidiuretic Hormone Secretion)
Nursing Care and Pathophysiology for Diabetes Insipidus (DI)
Addisons Disease
Nursing Care and Pathophysiology for Anaphylaxis
Nursing Care and Pathophysiology for Acquired Immune Deficiency Syndrome (AIDS)
Oncology Important Points
Lymphoma
Leukemia
Blood Transfusions (Administration)
Nursing Care and Pathophysiology for Disseminated Intravascular Coagulation (DIC)
Glaucoma
Macular Degeneration
Hearing Loss
Fractures
Cataracts
Integumentary (Skin) Important Points
Nursing Care and Pathophysiology of Osteoarthritis (OA)
Nursing Care and Pathophysiology of Osteoporosis
Burn Injuries
Pressure Ulcers/Pressure injuries (Braden scale)
Nursing Care and Pathophysiology for Herpes Zoster – Shingles
Nursing Care and Pathophysiology for Meningitis
Nursing Care and Pathophysiology for Seizure
Seizure Therapeutic Management
Seizure Assessment
Seizure Causes (Epilepsy, Generalized)
Stroke Nursing Care (CVA)
Nursing Care and Pathophysiology for Ischemic Stroke (CVA)
Stroke Therapeutic Management (CVA)
Stroke Assessment (CVA)
Nursing Care and Pathophysiology for Hemorrhagic Stroke (CVA)
Miscellaneous Nerve Disorders
Nursing Care and Pathophysiology for Parkinsons
Nursing Care and Pathophysiology for Multiple Sclerosis (MS)
Cerebral Perfusion Pressure CPP
Intracranial Pressure ICP
Adjunct Neuro Assessments
Levels of Consciousness (LOC)
Routine Neuro Assessments
Hemoglobin A1c (HbA1C)
Glucose Lab Values
Urinalysis (UA)
Creatinine (Cr) Lab Values
Blood Urea Nitrogen (BUN) Lab Values
Ammonia (NH3) Lab Values
Cholesterol (Chol) Lab Values
Albumin Lab Values
Coagulation Studies (PT, PTT, INR)
Platelets (PLT) Lab Values
White Blood Cell (WBC) Lab Values
Hematocrit (Hct) Lab Values
Red Blood Cell (RBC) Lab Values
Hemoglobin (Hbg) Lab Values
Chloride-Cl (Hyperchloremia, Hypochloremia)
Sodium-Na (Hypernatremia, Hyponatremia)
Potassium-K (Hyperkalemia, Hypokalemia)
Hypertonic Solutions (IV solutions)
Hypotonic Solutions (IV solutions)
Isotonic Solutions (IV solutions)
Base Excess & Deficit
Metabolic Alkalosis
Metabolic Acidosis (interpretation and nursing diagnosis)
Respiratory Alkalosis
Respiratory Acidosis (interpretation and nursing interventions)
ABG (Arterial Blood Gas) Interpretation-The Basics
ABGs Nursing Normal Lab Values
Chest Tube Management
Nursing Care and Pathophysiology of Pneumonia
Artificial Airways
Airway Suctioning
Nursing Care and Pathophysiology of COPD (Chronic Obstructive Pulmonary Disease)
Nursing Care and Pathophysiology for Influenza (Flu)
Nursing Care and Pathophysiology for Tuberculosis (TB)
Lung Sounds
Alveoli & Atelectasis
Gas Exchange
Nursing Care and Pathophysiology for Asthma
Suicidal Behavior
Eating Disorders (Anorexia Nervosa, Bulimia Nervosa)
Alcohol Withdrawal (Addiction)
Grief and Loss
Paranoid Disorders
Personality Disorders
Cognitive Impairment Disorders
Mood Disorders (Bipolar)
Depression
Schizophrenia
Generalized Anxiety Disorder
Post-Traumatic Stress Disorder (PTSD)
Somatoform
Dissociative Disorders
Anxiety
Pertussis – Whooping Cough
Varicella – Chickenpox
Mumps
Rubeola – Measles
Scoliosis
Attention Deficit Hyperactivity Disorder (ADHD)
Autism Spectrum Disorders
Spina Bifida – Neural Tube Defect (NTD)
Meningitis
Enuresis
Nephrotic Syndrome
Cerebral Palsy (CP)
Mixed (Cardiac) Heart Defects
Obstructive Heart (Cardiac) Defects
Defects of Decreased Pulmonary Blood Flow
Defects of Increased Pulmonary Blood Flow
Congenital Heart Defects (CHD)
Cystic Fibrosis (CF)
Asthma
Acute Otitis Media (AOM)
Bronchiolitis and Respiratory Syncytial Virus (RSV)
Tonsillitis
Conjunctivitis
Constipation and Encopresis (Incontinence)
Intussusception
Appendicitis
Celiac Disease
Pediatric Gastrointestinal Dysfunction – Diarrhea
Vomiting
Hemophilia
Nephroblastoma
Fever
Dehydration
Sickle Cell Anemia
Burn Injuries
Pediculosis Capitis
Impetigo
Eczema
Growth & Development – School Age- Adolescent
Growth & Development – Preschoolers
Growth & Development – Toddlers
Growth & Development – Infants
Care of the Pediatric Patient
Vitals (VS) and Assessment
Vasopressin
TCAs
SSRIs
Proton Pump Inhibitors
Vancomycin (Vancocin) Nursing Considerations
Ciprofloxacin (Cipro) Nursing Considerations
Metronidazole (Flagyl) Nursing Considerations
Anti-Infective – Penicillins and Cephalosporins
Parasympatholytics (Anticholinergics) Nursing Considerations
NSAIDs
Nitro Compounds
MAOIs
Hydralazine (Apresoline) Nursing Considerations
Insulin
Magnesium Sulfate
HMG-CoA Reductase Inhibitors (Statins)
Histamine 2 Receptor Blockers
Histamine 1 Receptor Blockers
Epoetin Alfa
Diuretics (Loop, Potassium Sparing, Thiazide, Furosemide/Lasix)
Corticosteroids
Benzodiazepines
Cardiac Glycosides
Calcium Channel Blockers
Parasympathomimetics (Cholinergics) Nursing Considerations
Sympathomimetics (Alpha (Clonodine) & Beta (Albuterol) Agonists)
Autonomic Nervous System (ANS)
Atypical Antipsychotics
Angiotensin Receptor Blockers
ACE (angiotensin-converting enzyme) Inhibitors
Renin Angiotensin Aldosterone System
Complex Calculations (Dosage Calculations/Med Math)
IV Infusions (Solutions)
Injectable Medications
Oral Medications
Basics of Calculations
Dimensional Analysis Nursing (Dosage Calculations/Med Math)
The SOCK Method – K
The SOCK Method – C
The SOCK Method – O
The SOCK Method – S
The SOCK Method – Overview
6 Rights of Medication Administration
Essential NCLEX Meds by Class
12 Points to Answering Pharmacology Questions
Therapeutic Drug Levels (Digoxin, Lithium, Theophylline, Phenytoin)
54 Common Medication Prefixes and Suffixes