Cardiac Glycosides

You're watching a preview. 300,000+ students are watching the full lesson.
Tarang Patel
DNP-NA,RN,CCRN, RPh
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For Cardiac Glycosides

Antidysrrhythmic Meds and Action Potential Chart (Cheatsheet)
Therapeutic Drug Levels (Cheatsheet)
140 Must Know Meds (Book)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Overview

  1. Cardiac Glycoside
    1. Examples
      1. Digoxin
      2. Digitoxin
      3. Quabain
    2. Indications
      1. Heart failure
      2. Atrial flutter
      3. Atrial fibrillation
    3. How they work
      1. Block sodium and potassium channels in the heart
      2. Causing an increase in sodium and calcium ions in cardiac cells.
        1. Increases force of contractions
        2. Increases vagal activity in the heart
        3. Decreases heart rate

Nursing Points

General

  1. Cardiac Glycosides have a narrow therapeutic window.
  2. Digoxin is the most commonly prescribed Cardiac Glycoside.

Assessment

  1. Monitor for side effects
    1. Nause/Vomiting/Diarrhea
    2. Loss of appetite
    3. Headache
    4. Anxiety
  2. Monitor for signs of toxicity (digitalis toxicity)
    1. Blurred vision
    2. Yellow vision or Halo vision
    3. Confusion
    4. Hallucination

Therapeutic Management

  1. Administration
    1. Always check APICAL PULSE for 1 full minute prior to administration
      1. HR < 60 bpm – HOLD MEDICATION, and contact provider
  2. Monitor potassium levels closely
    1. Hypokalemia and hyperkalemia should be reported to provider immediately
    2. Low potassium levels = increased risk for toxicity
    3. High potassium levels = decrease effectiveness of medication
  3. Contraindications
    1. AV block
    2. Wolff-Parkinson-White Syndrome
    3. Impaired renal function
  4. Monitor drug levels closely due to narrow therapeutic window
    1. Therapeutic Level – 0.8-2mg/ml

Nursing Concepts

  1. Perfusion
    1. Cardiac Glycosides may be prescribed to help with perfusion in patients who have heart failure and atrial arrhythmias.
  2. Pharmacology

Patient Education

  1. Patients should be educated on signs of toxicity and instructed to conact their provider immediately if toxicity is suspected.

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Transcript

So, in this video, we gonna talk about the cardiac glycoside. In this slide, I just want to put some interesting thing about this cardiac glycoside. These drugs, human being has been using these drugs for like, last 200 years or about, maybe 150 years, I guess. Because they were first used in 1875. They are derived from foxglove plant, this is name of the plant that they were extracted these drugs from in old days. Now, they were used in dropsy in 1875, started using in dropsy. What is dropsy? Dropsy is an edema. So, whenever the patient have edema, they were giving this extract of the plant and it was really helping in treating these edemas. Now, actually, it wasn’t treating the edema. These drugs treating heart failure. Now, one of the signs and symptoms of heart failure is edema. So, they were giving these drugs to treat this dropsy, means edema, actually it was treating the heart failure. And they started using these drugs in 1875. So, it’s kinda interesting stuff I just want to put in here.

So, let’s talk about the mechanism of action of these drugs. So, there are only 3 drugs in this categories, been used nowadays is Digoxin, Digitoxin, Quabain. The mostly, you may have hear the term is the Digoxin, often used for heart failure, and some other cardiac medication which will occur in the next slides. But, the first mechanism of action is increase the concentration of sodium and calcium ions in cardiac cells. And that will increase the force of contraction. And it also increase the vagal activity to the heart which is increase in parasympathetic nervous system flow to the heart which will decrease the rate of contraction, that means the heart rate. Now, this one is, the second one is easy to understand, so, like it increase the parasympathetic system, it’s gonna decrease the heart rate.

The first one we’ll talk about it in detail, and this mechanism of action is optional to understand ‘cause I’m just explaining, so, it makes more sense. So, this is a cardiac cell wall. Now, there are many, let’s draw it right here. Now, there are two phases of cardiac cycle. The first one is called Depolarization, that means contraction when the heart squeezes. The second one is Repolarization, when the ventricle relaxes. Now, in order to do a contraction and relaxation, ion movement across the cardiac cells plays a really really important part. So, let’s think this is a cardiac cell wall. And their sodium channels already in the cardiac cell. It’s called sodium leaking channels. What does that mean? There is a slight amount of sodium is always coming into the cardiac cell. So, during the depolarization, what happens, this sodium comes into the cell slowly, slowly and it builds up into this cardiac cell. Let’s make a cell like kinda square. Now, when there’s enough concentration of sodium in the cardiac cell, what happens is, there’s another channel, it’s called sodium calcium channel. Now, this channel does not require any kind of energy. When there’s enough concentration of sodium in the cardiac cell, it opens this channel and increase the flow of sodium and calcium into the cardiac cell. When there is a enough concentration, let’s say, enough concentration of sodium and calcium in the cardiac cell, it will contract, cause the depolarization and contraction. Now, in the repolarization, what happens, there’s another channel, not that too many channels, I know it’s kinda really like a little bit confusing but if you pay attention really close, it will make more sense. There’s a channel, it’s called the sodium potassium channel. Now, during the repolarization, this channel will close and this channel will open. And what it does, it actually throws out that sodium that came in to the cell during depolarization and brings in the potassium. So, it throws out this sodium out and it brings the potassium in and balances out the ion concentration across the cell wall. This medication, what they do, is blocks this pump. So, cardiac glycoside blocks this sodium channel, sodium potassium channel. That means, sodium won’t be going out easily and potassium won’t be coming in easily. That means the increased concentration of sodium will stay in the cells. That means, this channel will bring more calcium. More sodium, more calcium will cause increased force of contraction. This one is a little bit complicated but this is how the cardiac glycoside works. As a nurse, you don’t really have to know in detail this much but keep in mind that this sodium, calcium and potassium ions plays a really important role in this cardiac glycoside mechanism of action. ‘Cause whenever we’ll be talking about the side effects, we’ll be talking about the ion concentration as well. Like a high potassium concentration will do what to cardiac glycoside or how low potassium concentration will do what to this cardiac glycoside. So, that’s the mechanism of action.

Let’s talk about what disease condition we use this. Now, since we know this medication increases the force of contraction, it can be used in the heart failure. ‘Cause a heart failure is basically a pump failure and this medication will help heart to pump really effectively in order to get the blood out of the heart into the systemic circulation. This one also, since we know this medication also increases the parasympathetic nervous system or parasympathetic nervous outflow to the heart and decreases the heart rate, this medication can be used in atrial flutter, with RVR and atrial fibrillation with RVR in order to control the rate because they gonna decrease the heart rate. So, the main use is in heart failure and to control rate in atrial flutter and atrial fibrillation.

Side effect. Very important part of this medication and often tested in NCLEX. This medication can cause nausea, vomiting and diarrhea. Loss of appetite (Anorexia). Headache. It can cause anxiety. It will cause the blurred vision and/or yellowish vision also called as a ‘Halo vision.’ This is a really really important side effects to know for this cardiac glycoside like digoxin and often often tested in the NCLEX. Like, what is the first signs and symptoms of digitalis toxicity. And they’ll have several option. The first one is the blurred vision or yellowish vision and anorexia is the first signs and symptoms of the digitalis toxicity, that is really really important. And it can cause confusion and hallucinations as well. So yeah, this one is really important to remember for NCLEX.

Now, we know this whole mechanism of action of this cardiac glycosides is based on sodium, calcium and potassium. So, these medications are contraindicated with the hypokalemia. The normal concentration of potassium is 3.5 to 5.2. Now, if a patient has a low potassium concentration or low potassium level, there’s a high chance that they’ll get toxicity of these compounds. So, hypokalemia causes the digitalis toxicity and this is often tested question in NCLEX as well. They’ll have like, okay, so which patients, the patients on Digoxin, which level you should report to the physician? And there will be several values and options and one of them would be potassium 2.4 which is really really low because the normal is 3.5 to 5.2. And, it can cause the digitalis toxicity. Hyperkalemia, so, this is opposite to hypokalemia like it decreases the effectiveness of the medications. So, like if you have a high concentration of the potassium, this medication will not be able to work. If they have a AV block, Wolff-Parkinson-White syndrome or impaired renal functions. These medications are contraindicated.

And, the another thing to remember about these drugs, they have a narrow safety margin, that means, their therapeutic level range is really really narrow. You can refer over therapeutic level videos in order to know more about these range. And, you need to, they do the, like if the patient is on the hospital, they do the digoxin level pretty much every morning in order to make sure this patient receiving the right dose of these medications. And also, another thing I need to turn here is, as a nurse, before you give this medication, always always check heart rate. If patient’s heart rate is below 60, do not give this medication and notify physician. So, that’s the important thing to remember for NCLEX as well. Check pulse before giving this medication. It’s not like radial pulse, you want to check the apical pulse, the real real heart rate. So, make sure you do that one before giving this medication to any patient.

So, that was it about the cardiac glycoside. If you have any questions, you can e-mail us and ask us. Thanks for watching this video. Thank you.

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Study Plan for Study Skills, Test Taking for the NCLEX® Using Med-Surg (Lewis 10th ed.) designed for Westmoreland County Community College

Concepts Covered:

  • Concepts of Population Health
  • Factors Influencing Community Health
  • Community Health Overview
  • Substance Abuse Disorders
  • Upper GI Disorders
  • Renal Disorders
  • Newborn Care
  • Integumentary Disorders
  • Tissues and Glands
  • Central Nervous System Disorders – Brain
  • Digestive System
  • Urinary Disorders
  • Urinary System
  • Musculoskeletal Trauma
  • Concepts of Mental Health
  • Health & Stress
  • Developmental Theories
  • Fundamentals of Emergency Nursing
  • Communication
  • Basics of NCLEX
  • Test Taking Strategies
  • Prioritization
  • Delegation
  • Emotions and Motivation
  • Integumentary Disorders
  • Legal and Ethical Issues
  • Basic
  • Preoperative Nursing
  • Labor and Delivery
  • Fetal Development
  • Newborn Complications
  • Postpartum Complications
  • Postpartum Care
  • Labor Complications
  • Pregnancy Risks
  • Prenatal Concepts
  • Circulatory System
  • Cardiac Disorders
  • Emergency Care of the Cardiac Patient
  • Vascular Disorders
  • Shock
  • Postoperative Nursing
  • Intraoperative Nursing
  • Oncology Disorders
  • Neurological Emergencies
  • Respiratory Disorders
  • Female Reproductive Disorders
  • Acute & Chronic Renal Disorders
  • Liver & Gallbladder Disorders
  • Lower GI Disorders
  • Disorders of Pancreas
  • Disorders of the Thyroid & Parathyroid Glands
  • Disorders of the Adrenal Gland
  • Disorders of the Posterior Pituitary Gland
  • Immunological Disorders
  • Hematologic Disorders
  • EENT Disorders
  • Integumentary Important Points
  • Musculoskeletal Disorders
  • Emergency Care of the Neurological Patient
  • Peripheral Nervous System Disorders
  • Central Nervous System Disorders – Spinal Cord
  • Neurologic and Cognitive Disorders
  • Eating Disorders
  • Noninfectious Respiratory Disorder
  • Respiratory Emergencies
  • Infectious Respiratory Disorder
  • Psychological Emergencies
  • Trauma-Stress Disorders
  • Personality Disorders
  • Cognitive Disorders
  • Bipolar Disorders
  • Depressive Disorders
  • Psychotic Disorders
  • Anxiety Disorders
  • Somatoform Disorders
  • Infectious Disease Disorders
  • Musculoskeletal Disorders
  • Renal and Urinary Disorders
  • Cardiovascular Disorders
  • EENT Disorders
  • Gastrointestinal Disorders
  • Hematologic Disorders
  • Oncologic Disorders
  • Endocrine and Metabolic Disorders
  • Childhood Growth and Development
  • Adulthood Growth and Development
  • Medication Administration
  • Nervous System
  • Dosage Calculations
  • Learning Pharmacology
  • Prefixes
  • Suffixes

Study Plan Lessons

Communicable Diseases
Disasters & Bioterrorism
Cultural Care
Environmental Health
Technology & Informatics
Epidemiology
Health Promotion & Disease Prevention
Head to Toe Nursing Assessment (Physical Exam)
Enteral & Parenteral Nutrition (Diet, TPN)
Specialty Diets (Nutrition)
Blood Glucose Monitoring
Intake and Output (I&O)
Hygiene
Pain and Nonpharmacological Comfort Measures
Bowel Elimination
Urinary Elimination
Complications of Immobility
Patient Positioning
Defense Mechanisms
Overview of Developmental Theories
Abuse
Therapeutic Communication
Overview of the Nursing Process
Triage
Prioritization
Delegation
Maslow’s Hierarchy of Needs in Nursing
Isolation Precaution Types (PPE)
Fall and Injury Prevention
Fire and Electrical Safety
Brief CPR (Cardiopulmonary Resuscitation) Overview
HIPAA
Advance Directives
Legal Considerations
Process of Labor
Fetal Circulation
Fetal Environment
Newborn of HIV+ Mother
Hyperbilirubinemia (Jaundice)
Transient Tachypnea of Newborn
Meconium Aspiration
Babies by Term
Newborn Reflexes
Body System Assessments
Newborn Physical Exam
Postpartum Hemorrhage (PPH)
Mastitis
Initial Care of the Newborn (APGAR)
Breastfeeding
Postpartum Discomforts
Postpartum Physiological Maternal Changes
Dystocia
Precipitous Labor
Preterm Labor
Abruptio Placentae (Placental abruption)
Placenta Previa
Prolapsed Umbilical Cord
Fetal Heart Monitoring (FHM)
Leopold Maneuvers
Mechanisms of Labor
Fetal Development
Infections in Pregnancy
Preeclampsia: Signs, Symptoms, Nursing Care, and Magnesium Sulfate
Gestational HTN (Hypertension)
Hydatidiform Mole (Molar pregnancy)
Ectopic Pregnancy
Disseminated Intravascular Coagulation (DIC)
Gestational Diabetes (GDM)
Nutrition in Pregnancy
Chorioamnionitis
Antepartum Testing
Discomforts of Pregnancy
Physiological Changes
Maternal Risk Factors
Fundal Height Assessment for Nurses
Gravidity and Parity (G&Ps, GTPAL)
Gestation & Nägele’s Rule: Estimating Due Dates
Family Planning & Contraception
Menstrual Cycle
Hemodynamics
Normal Sinus Rhythm
Performing Cardiac (Heart) Monitoring
Preload and Afterload
Sinus Bradycardia
Sinus Tachycardia
Atrial Fibrillation (A Fib)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Nursing Care and Pathophysiology for Heart Failure (CHF)
Nursing Care and Pathophysiology of Angina
Pacemakers
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Distributive Shock
Discharge (DC) Teaching After Surgery
Postoperative (Postop) Complications
Post-Anesthesia Recovery
Malignant Hyperthermia
Moderate Sedation
Local Anesthesia
Preoperative (Preop)Assessment
General Anesthesia
Preoperative (Preop) Nursing Priorities
Preoperative (Preop) Education
Informed Consent
Biopsy
Ultrasound
Echocardiogram (Cardiac Echo)
Cardiovascular Angiography
Cerebral Angiography
Magnetic Resonance Imaging (MRI)
X-Ray (Xray)
Computed Tomography (CT)
Nursing Care and Pathophysiology for Menopause
Nursing Care and Pathophysiology for Endometriosis
Nursing Care and Pathophysiology for Pelvic Inflammatory Disease (PID)
Dialysis & Other Renal Points
Nursing Care and Pathophysiology of Chronic Kidney (Renal) Disease (CKD)
Nursing Care and Pathophysiology of Urinary Tract Infection (UTI)
Nursing Care and Pathophysiology of Glomerulonephritis
Nursing Care and Pathophysiology for Cirrhosis (Liver Disease, Hepatic encephalopathy, Portal Hypertension, Esophageal Varices)
Nursing Care and Pathophysiology of Acute Kidney (Renal) Injury (AKI)
Nursing Care and Pathophysiology for Hepatitis (Liver Disease)
Nursing Care and Pathophysiology for Cholecystitis
Nursing Care and Pathophysiology for Crohn’s Disease
Nursing Care and Pathophysiology for Ulcerative Colitis(UC)
Nursing Care and Pathophysiology for Inflammatory Bowel Disease (IBD)
Nursing Care and Pathophysiology for Appendicitis
Nursing Care and Pathophysiology for Peptic Ulcer Disease (PUD)
Nursing Care and Pathophysiology for Pancreatitis
Hyperglycaemic Hyperosmolar Non-ketotic syndrome (HHNS)
Nursing Care and Pathophysiology of Diabetic Ketoacidosis (DKA)
Diabetes Management
Nursing Care and Pathophysiology of Diabetes Mellitus (DM)
Nursing Care and Pathophysiology for Hypothyroidism
Nursing Care and Pathophysiology for Hyperthyroidism
Nursing Care and Pathophysiology for Cushings Syndrome
Nursing Care and Pathophysiology for SIADH (Syndrome of Inappropriate antidiuretic Hormone Secretion)
Nursing Care and Pathophysiology for Diabetes Insipidus (DI)
Addisons Disease
Nursing Care and Pathophysiology for Anaphylaxis
Nursing Care and Pathophysiology for Acquired Immune Deficiency Syndrome (AIDS)
Oncology Important Points
Lymphoma
Leukemia
Blood Transfusions (Administration)
Nursing Care and Pathophysiology for Disseminated Intravascular Coagulation (DIC)
Glaucoma
Macular Degeneration
Hearing Loss
Fractures
Cataracts
Integumentary (Skin) Important Points
Nursing Care and Pathophysiology of Osteoarthritis (OA)
Nursing Care and Pathophysiology of Osteoporosis
Burn Injuries
Pressure Ulcers/Pressure injuries (Braden scale)
Nursing Care and Pathophysiology for Herpes Zoster – Shingles
Nursing Care and Pathophysiology for Meningitis
Nursing Care and Pathophysiology for Seizure
Seizure Therapeutic Management
Seizure Assessment
Seizure Causes (Epilepsy, Generalized)
Stroke Nursing Care (CVA)
Nursing Care and Pathophysiology for Ischemic Stroke (CVA)
Stroke Therapeutic Management (CVA)
Stroke Assessment (CVA)
Nursing Care and Pathophysiology for Hemorrhagic Stroke (CVA)
Miscellaneous Nerve Disorders
Nursing Care and Pathophysiology for Parkinsons
Nursing Care and Pathophysiology for Multiple Sclerosis (MS)
Cerebral Perfusion Pressure CPP
Intracranial Pressure ICP
Adjunct Neuro Assessments
Levels of Consciousness (LOC)
Routine Neuro Assessments
Hemoglobin A1c (HbA1C)
Glucose Lab Values
Urinalysis (UA)
Creatinine (Cr) Lab Values
Blood Urea Nitrogen (BUN) Lab Values
Ammonia (NH3) Lab Values
Cholesterol (Chol) Lab Values
Albumin Lab Values
Coagulation Studies (PT, PTT, INR)
Platelets (PLT) Lab Values
White Blood Cell (WBC) Lab Values
Hematocrit (Hct) Lab Values
Red Blood Cell (RBC) Lab Values
Hemoglobin (Hbg) Lab Values
Chloride-Cl (Hyperchloremia, Hypochloremia)
Sodium-Na (Hypernatremia, Hyponatremia)
Potassium-K (Hyperkalemia, Hypokalemia)
Hypertonic Solutions (IV solutions)
Hypotonic Solutions (IV solutions)
Isotonic Solutions (IV solutions)
Base Excess & Deficit
Metabolic Alkalosis
Metabolic Acidosis (interpretation and nursing diagnosis)
Respiratory Alkalosis
Respiratory Acidosis (interpretation and nursing interventions)
ABG (Arterial Blood Gas) Interpretation-The Basics
ABGs Nursing Normal Lab Values
Chest Tube Management
Nursing Care and Pathophysiology of Pneumonia
Artificial Airways
Airway Suctioning
Nursing Care and Pathophysiology of COPD (Chronic Obstructive Pulmonary Disease)
Nursing Care and Pathophysiology for Influenza (Flu)
Nursing Care and Pathophysiology for Tuberculosis (TB)
Lung Sounds
Alveoli & Atelectasis
Gas Exchange
Nursing Care and Pathophysiology for Asthma
Suicidal Behavior
Eating Disorders (Anorexia Nervosa, Bulimia Nervosa)
Alcohol Withdrawal (Addiction)
Grief and Loss
Paranoid Disorders
Personality Disorders
Cognitive Impairment Disorders
Mood Disorders (Bipolar)
Depression
Schizophrenia
Generalized Anxiety Disorder
Post-Traumatic Stress Disorder (PTSD)
Somatoform
Dissociative Disorders
Anxiety
Pertussis – Whooping Cough
Varicella – Chickenpox
Mumps
Rubeola – Measles
Scoliosis
Attention Deficit Hyperactivity Disorder (ADHD)
Autism Spectrum Disorders
Spina Bifida – Neural Tube Defect (NTD)
Meningitis
Enuresis
Nephrotic Syndrome
Cerebral Palsy (CP)
Mixed (Cardiac) Heart Defects
Obstructive Heart (Cardiac) Defects
Defects of Decreased Pulmonary Blood Flow
Defects of Increased Pulmonary Blood Flow
Congenital Heart Defects (CHD)
Cystic Fibrosis (CF)
Asthma
Acute Otitis Media (AOM)
Bronchiolitis and Respiratory Syncytial Virus (RSV)
Tonsillitis
Conjunctivitis
Constipation and Encopresis (Incontinence)
Intussusception
Appendicitis
Celiac Disease
Pediatric Gastrointestinal Dysfunction – Diarrhea
Vomiting
Hemophilia
Nephroblastoma
Fever
Dehydration
Sickle Cell Anemia
Burn Injuries
Pediculosis Capitis
Impetigo
Eczema
Growth & Development – School Age- Adolescent
Growth & Development – Preschoolers
Growth & Development – Toddlers
Growth & Development – Infants
Care of the Pediatric Patient
Vitals (VS) and Assessment
Vasopressin
TCAs
SSRIs
Proton Pump Inhibitors
Vancomycin (Vancocin) Nursing Considerations
Ciprofloxacin (Cipro) Nursing Considerations
Metronidazole (Flagyl) Nursing Considerations
Anti-Infective – Penicillins and Cephalosporins
Parasympatholytics (Anticholinergics) Nursing Considerations
NSAIDs
Nitro Compounds
MAOIs
Hydralazine (Apresoline) Nursing Considerations
Insulin
Magnesium Sulfate
HMG-CoA Reductase Inhibitors (Statins)
Histamine 2 Receptor Blockers
Histamine 1 Receptor Blockers
Epoetin Alfa
Diuretics (Loop, Potassium Sparing, Thiazide, Furosemide/Lasix)
Corticosteroids
Benzodiazepines
Cardiac Glycosides
Calcium Channel Blockers
Parasympathomimetics (Cholinergics) Nursing Considerations
Sympathomimetics (Alpha (Clonodine) & Beta (Albuterol) Agonists)
Autonomic Nervous System (ANS)
Atypical Antipsychotics
Angiotensin Receptor Blockers
ACE (angiotensin-converting enzyme) Inhibitors
Renin Angiotensin Aldosterone System
Complex Calculations (Dosage Calculations/Med Math)
IV Infusions (Solutions)
Injectable Medications
Oral Medications
Basics of Calculations
Dimensional Analysis Nursing (Dosage Calculations/Med Math)
The SOCK Method – K
The SOCK Method – C
The SOCK Method – O
The SOCK Method – S
The SOCK Method – Overview
6 Rights of Medication Administration
Essential NCLEX Meds by Class
12 Points to Answering Pharmacology Questions
Therapeutic Drug Levels (Digoxin, Lithium, Theophylline, Phenytoin)
54 Common Medication Prefixes and Suffixes