Nursing Care and Pathophysiology of Angina

You're watching a preview. 300,000+ students are watching the full lesson.
Brad Bass
ASN,RN
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For Nursing Care and Pathophysiology of Angina

Angina – Management (Mnemonic)
Angina (Cheatsheet)
Chest Pain Chart (Cheatsheet)
Angina Pectoris (Image)
Acute Coronary Syndromes (Image)
Stable Angina (Picmonic)
Unstable Angina (Picmonic)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Overview for Nursing Care and Pathophysiology for Angina:

General

  1. Angina is chest pain that is caused by lack of blood flow to the heart. 
  2. It is primarily categorized into two different types: Stable and Unstable Angina.

          Assessment

  1. Chest Pain
    1. Burning, squeezing, crushing, etc
    2. Radiation of pain to jaw, arms, back, etc
    3. May be made worse by exertion or eased with rest
  2. Nausea/Vomiting
  3. Diaphoresis
  4. Dizziness
  5. Palpitations
  6. Vital Signs
    1. Tachycardia
    2. Hypotension
    3. Dyspnea
  7. Labs: 
    1. Trending Troponins
    2. EKG

      Therapeutic Management

      1. Vasodilatory agents to increase cardiac perfusion
        1. Nitroglycerin, morphine, etc.
      2. Antiplatelet or Anticoagulation medications  to maintain vessel patency
        1. Aspirin 325mg
        2. IV Heparin
      3. Oxygen

      Nursing Concepts

  1.   Perfusion
  2. Oxygenation

                    Patient Education

  1. Smoking Cessation
  2. Diet/Exercise
  3. Blood pressure control
  4. Diabetes control

Related Lesson

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

ADPIE Related Lessons

Transcript

What’s going on, guys. My name is Brad and welcome to nursing.com. And in today’s video, what we’re going to be doing is we’re going to discuss angina. We’re going to talk about some of the different types of angina that you may come across, as well as, some signs and symptoms that a patient may experience, and some treatment modalities that we may be giving patients as a result.  Without further ado, let’s dive in. 

So angina is specifically chest pain that starts at the heart. It’s important to remember that.  Patients can have chest pain for all sorts of different kinds of reasons, right? Patient could sustain a pneumothorax, a collapsed lung.  Or a tumor in the lungs could also cause chest pain in a patient. All sorts of different reasons why a patient could have chest pain, but angina is specifically chest pain that starts at the heart for one reason or another, those coronary arteries, the vessels on the heart themselves, are blocked and blood flow to those tissues is impeded. And so whenever we’re talking about angina, we’re primarily talking about two different types. There’s stable angina as well as unstable angina. Now, whenever we’re discussing stable angina, this is a situation where a patient has some degree of coronary artery disease, some degree of blockages within those vessels of the heart.  But it’s not enough to threaten their life. This usually is brought on by strenuous exercise or activity. That’s when chest pain presents in these patients and it usually subsides with rest.  But in unstable angina, it’s a very different story. This is the kind of angina where a patient has a significant degree of blockages within those coronary arteries, to the point that they’re not getting adequate blood flow or oxygen to those tissues of the heart, and this brings on chest pain.  And in these situations, rest does not cure this chest pain. 

And so whenever I think about angina, I really like to think about a car engine and the oil in the car. I think that this is always something that is very applicable, you know. It’s very comparable to a heart and the vessels in our body. You think about the engine being the heart, right? It’s the heart of the car. And the oil is the blood of the car. The engine, all of these pipes in this vehicle, in this body, need oil in order to continue to survive. So think about all of these little, small, intricate, tiny pipes coming off of this engine and what would happen if you didn’t change your oil filter for a very long time. Crud is going to slowly build up in these pipes. And these tiny little pipes, crud is going to build up because that gunk is just backing up and it’s not properly being filtered out. So what happens then, if a piece of this gunk were to break off and completely occlude and prevent oil from getting back to the engine? Same kind of concept. There’s some sort of occlusion, there’s some sort of degree of blockage, preventing blood from actually perfusing the heart itself. 

Some of the key assessment findings that you’re going to find with angina, of course, number one is chest pain. There are all sorts of different descriptors that a patient may give for chest pain. It could be stabbing, or crushing, burning. A lot of times we hear patients describe it like an elephant is sitting on the chest, a pressure. And of course this pain can radiate, and radiate down the arm to the jaw, through the sternum and through the back.  A lot of different descriptors that a patient could give for chest pain. Shortness of breath. Diaphoresis – patients becoming excessively sweaty. Of course, you could think if a patient is experiencing angina, the body is in a fight or flight situation, activation of that sympathetic nervous system. So, you know, shortness of breath, diaphoresis, dizziness.  Palpitations are also a big one that you could see. Remember, that electrical conduction system of the heart actually resides within the heart muscle itself. And so if the heart muscle itself is not getting the blood and oxygen it needs, you can think, neither is that conduction system. So palpitations and electrical abnormalities are not uncommon. Some of the vital sign derangements that we could see with patients, one is tachycardia. You know, the heart not getting blood and nutrients is basically, the brain interprets that as “why is the heart not getting blood and nutrients?” We need to get more blood to that heart. And so to compensate, tachycardia. The heart just starts pumping harder. We need to get blood, blood, where the heart is starving. We need to give blood to the heart. Hypotension is another one. And the way that I like to think about this is, remember, the heart is a muscle, right? And so the way I think about this is, have you ever fallen asleep on your arm? I think we all have. And you wake up and it’s super numb. Sometimes you can’t even move it. That’s a muscle, right. And why did your arm fall asleep and did you lose all that strength? It’s because when you fell asleep on it, you blocked off blood flow to that arm. Same kind of concept. As that heart muscle goes longer and longer and longer goes without oxygen and blood, the weaker and weaker it gets.  The less effective it pumps and therefore blood pressure drops. 

And now some of the labs and diagnostic tests that we look at whenever we’re talking about angina as well, two primary ones, we really look at EKG. This is the  ST wave, particularly. We look for ST elevation or ST depression.  You’ll recall, maybe go reference our EKG lesson here on nursing.com, but you will recall the ST wave – ST elevation or ST depression is one of the primary things that we look at on EKG, which can be reflective of cardiac ischemia or actual infarction, a heart attack. And then we also trend something called troponin. It’s a cardiac enzyme. It’s an actual laboratory value that we looked at, it is the gold standard, and is directly reflective of cardiac injury. 

Now, what medications might we see prescribed for a patient who’s experiencing angina? Well, you’ve got to remember, the overall idea here is that we have a heart that is starving for blood. So the aim, the overall idea of our treatment modalities, is to increase heart flow, right? We want to increase blood flow through those coronary arteries. And we do so through the use of several different types of medications, one, our vasodilatory agents. Kind of like this image here on the right.  The idea is, the more narrow a pipe that you have that fluid is flowing through, the less fluid that can flow through it. But if we’re able to widen that intra arterial lumen, if we’re able to widen the pipe, then we’re able to deliver more fluid to the heart tissues. And so, some of the vasodilatory agents that we see given are nitroglycerin. We see it all the time in the CVICU.  You may have also heard patients being educated, if you’re at home and you have chest pain, put a nitroglycerin tablet under your tongue. The entire aim of that medication is to dilate those coronary arteries and increase blood flow to the heart. Another medication, that is along the same lines that you may see given, is morphine. Now, of course we know morphine is used to treat pain, but it has very similar effects like nitro does. It dilates those vessels of the heart. We could also see anti-platelets such as aspirin given to prevent further platelet aggregation to whatever that is that is occluding that heart vessel, could be a clot. We want to prevent platelets from aggregating further. Then we could also see anticoagulant medications such as IV heparin. Same similar idea. We want to prevent any kind of clot from getting larger, but we also want to thin that blood in an attempt to sort of lubricate that vessel and keep that vessel patent. And of course, patients are short of breath. There is an increased myocardial oxygen demand. The heart is working harder and harder because of that blocked artery so patients are going to need supplemental O2. 

So what are we going to educate our patient on? It’s very important that we educate our patient on the importance of smoking cessation. Smoking is one of the leading causes of coronary artery disease in patients. Smoking directly leads to vasoconstriction of those coronary arteries. And as we’ve already previously discussed, the more narrow the inside of that vessel is, the less fluid that can actually flow through to the heart. We’re also going to want to educate our patients on the importance of diet and exercise. Also, as we saw on a previous slide, the deposition of those fatty atherosclerotic plaque into the vessels, it’s directly tied and linked to poor diet. We want to make sure we educate on the importance of limiting fatty, fried foods. We also want to make sure we educate on the importance of limiting salt intake as well because salt can lead to high blood pressure and blood pressure control is the next thing that we want to make sure we educate our patients on. Again, same concept, right? Hypertension, high blood pressure, more narrow arteries, less blood flow to the heart. And of course, diabetes control is something else that we want to make sure that we’re educating patients on as well. Remember, what is diabetes, lack of insulin, high blood glucose. And you can imagine the more sugar that you have in your blood, same concept of pouring sugar into a glass of water. If you were pouring a glass of sweet tea and the more sugar you dumped into that glass of sweet tea, the thicker and thicker your blood is going to get, same concept with high blood glucose levels. The more sugar you have in your blood, theoretically, the more thick your blood is and the more difficult it is for that thicker blood to perfuse those coronary arteries and the tissues of the heart. 

And so to summarize some of the key points, let’s remember that angina is chest pain that starts at the heart. Remember there are all different types of reasons that a patient could be experiencing chest pain, but this is always cardiac in origin. Remember that there’s a stable versus an unstable angina, stable being associated with strenuous activity, but subsides with rest and unstable being the type that is more life-threatening and can lead to hemodynamic instability. Talking about assessment findings, chest pain, chest pain, chest pain, along with all the different descriptors that a patient may provide for that chest pain. Palpitations, because that electrical conduction system resides within that poorly perfused heart muscle. Tachycardia, the brain saying, Hey, we’re not getting enough blood to the heart, let’s increase the heart rate. And of course, EKGs, checking for ST wave elevation depression, as well as troponin, which is that lab value, the cardiac enzyme that’s directly reflective of cardiac injury or insult. Also remembering that all of our medical interventions that we’re going to provide for a patient are directly geared at increasing blood flow to that heart: nitroglycerin, morphine, those vasodilatory agents, along with antiplatelets and anticoagulants all need to get blood flow to that heart. And patient education, which we just discussed. 

I hope that you guys found the video helpful. Be sure to check out some of our other angina related cheat sheets down below. Have a great day. Go out there and be your best selves. And as always, happy nursing.

 

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Final Exam

Concepts Covered:

  • Terminology
  • Urinary System
  • Respiratory Disorders
  • Acute & Chronic Renal Disorders
  • Disorders of the Adrenal Gland
  • Oncology Disorders
  • Integumentary Disorders
  • Preoperative Nursing
  • Musculoskeletal Trauma
  • Integumentary Disorders
  • Respiratory Emergencies
  • Disorders of the Posterior Pituitary Gland
  • Hematologic Disorders
  • Renal Disorders
  • Labor Complications
  • Immunological Disorders
  • Upper GI Disorders
  • Neurological Emergencies
  • Disorders of Pancreas
  • Musculoskeletal Disorders
  • Cardiac Disorders
  • Disorders of the Thyroid & Parathyroid Glands
  • Integumentary Important Points
  • Pregnancy Risks
  • Urinary Disorders
  • Vascular Disorders
  • Central Nervous System Disorders – Brain
  • Nervous System
  • Lower GI Disorders
  • Intraoperative Nursing
  • Eating Disorders
  • Circulatory System
  • Postoperative Nursing
  • Liver & Gallbladder Disorders
  • Emergency Care of the Cardiac Patient
  • Female Reproductive Disorders
  • Shock
  • Respiratory System
  • Substance Abuse Disorders
  • Fetal Development
  • Proteins
  • Noninfectious Respiratory Disorder
  • Newborn Care
  • Statistics
  • Emergency Care of the Neurological Patient
  • Basics of Sociology
  • Bipolar Disorders
  • Infectious Respiratory Disorder

Study Plan Lessons

Diagnostic Testing Course Introduction
Fluid & Electrolytes Course Introduction
X-Ray (Xray)
X-Ray (Xray)
X-Ray (Xray)
Nursing Care and Pathophysiology of Acute Kidney (Renal) Injury (AKI)
Addisons Disease
Computed Tomography (CT)
Computed Tomography (CT)
Computed Tomography (CT)
Fluid Pressures
Informed Consent
Nursing Care and Pathophysiology for Cushings Syndrome
Fluid Shifts (Ascites) (Pleural Effusion)
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging (MRI)
Preoperative (Preop)Assessment
Pressure Ulcers/Pressure injuries (Braden scale)
CT & MR Angiography
CT & MR Angiography
Nursing Care and Pathophysiology for Diabetes Insipidus (DI)
Nursing Care and Pathophysiology for Disseminated Intravascular Coagulation (DIC)
Nursing Care and Pathophysiology of Glomerulonephritis
Isotonic Solutions (IV solutions)
Nursing Care and Pathophysiology of Osteoarthritis (OA)
Nursing Care and Pathophysiology for Pancreatitis
Preoperative (Preop) Education
Cerebral Angiography
Cerebral Angiography
Cerebral Angiography
Hypotonic Solutions (IV solutions)
Nursing Care and Pathophysiology of Osteoporosis
Nursing Care and Pathophysiology for Peptic Ulcer Disease (PUD)
Preoperative (Preop) Nursing Priorities
Thrombocytopenia
Blood Transfusions (Administration)
Cardiovascular Angiography
Cardiovascular Angiography
Cardiovascular Angiography
Fractures
Nursing Care and Pathophysiology for Hyperthyroidism
Hypertonic Solutions (IV solutions)
Integumentary (Skin) Important Points
Preload and Afterload
Nursing Care and Pathophysiology of Urinary Tract Infection (UTI)
Echocardiogram (Cardiac Echo)
Echocardiogram (Cardiac Echo)
Echocardiogram (Cardiac Echo)
Nursing Care and Pathophysiology for Hypothyroidism
Performing Cardiac (Heart) Monitoring
Ultrasound
Ultrasound
Interventional Radiology
Interventional Radiology
Nuclear Medicine
Cardiac Stress Test
Cardiac Stress Test
Pulmonary Function Test
Pulmonary Function Test
Endoscopy & EGD
Endoscopy & EGD
Colonoscopy
Colonoscopy
Mammogram
Biopsy
Biopsy
Electroencephalography (EEG)
Electroencephalography (EEG)
Electromyography (EMG)
Electromyography (EMG)
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology for Appendicitis
Nursing Care and Pathophysiology of Chronic Kidney (Renal) Disease (CKD)
Nursing Care and Pathophysiology of Diabetes Mellitus (DM)
General Anesthesia
Leukemia
Sodium-Na (Hypernatremia, Hyponatremia)
Calcium-Ca (Hypercalcemia, Hypocalcemia)
Diabetes Management
Dialysis & Other Renal Points
Local Anesthesia
Lymphoma
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Chloride-Cl (Hyperchloremia, Hypochloremia)
Nursing Care and Pathophysiology of Diabetic Ketoacidosis (DKA)
Moderate Sedation
Oncology Important Points
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Hyperglycaemic Hyperosmolar Non-ketotic syndrome (HHNS)
Nursing Care and Pathophysiology for Inflammatory Bowel Disease (IBD)
Magnesium-Mg (Hypomagnesemia, Hypermagnesemia)
Malignant Hyperthermia
Phosphorus-Phos
Nursing Care and Pathophysiology for Ulcerative Colitis(UC)
Nursing Care and Pathophysiology for Crohn’s Disease
Normal Sinus Rhythm
Post-Anesthesia Recovery
Nursing Care and Pathophysiology for Acquired Immune Deficiency Syndrome (AIDS)
Nursing Care and Pathophysiology for Cholecystitis
Nursing Care and Pathophysiology for Heart Failure (CHF)
Postoperative (Postop) Complications
Sinus Bradycardia
Nursing Care and Pathophysiology for Anaphylaxis
Nursing Care and Pathophysiology for Hepatitis (Liver Disease)
Sinus Tachycardia
Nursing Care and Pathophysiology for Cirrhosis (Liver Disease, Hepatic encephalopathy, Portal Hypertension, Esophageal Varices)
Discharge (DC) Teaching After Surgery
Pacemakers
Atrial Fibrillation (A Fib)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Nursing Care and Pathophysiology for Pelvic Inflammatory Disease (PID)
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology for Endometriosis
Nursing Care and Pathophysiology for Menopause
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Distributive Shock
ABG (Arterial Blood Gas) Interpretation-The Basics
ABG (Arterial Blood Gas) Oxygenation
ABG Course (Arterial Blood Gas) Introduction
ABGs Nursing Normal Lab Values
ABGs Tic-Tac-Toe interpretation Method
Absolute Neutrophil Count (ANC) Lab Values
Absolute Reticulocyte Count (ARC) Lab Values
Alanine Aminotransferase (ALT) Lab Values
Albumin Lab Values
Alkaline Phosphatase (ALK PHOS) Lab Values
Alpha-fetoprotein (AFP) Lab Values
Ammonia (NH3) Lab Values
Anion Gap
Antinuclear Antibody Lab Values
Base Excess & Deficit
Beta Hydroxy (BHB) Lab Values
Bicarbonate (HCO3) Lab Values
Blood Urea Nitrogen (BUN) Lab Values
Brain Natriuretic Peptide (BNP) Lab Values
C-Reactive Protein (CRP) Lab Values
Carbon Dioxide (Co2) Lab Values
Carboxyhemoglobin Lab Values
Cardiac (Heart) Enzymes
Cholesterol (Chol) Lab Values
Coagulation Studies (PT, PTT, INR)
Congestive Heart Failure (CHF) Labs
COPD (Chronic Obstructive Pulmonary Disease) Labs
Cortisol Lab Vales
Creatine Phosphokinase (CPK) Lab Values
Creatinine (Cr) Lab Values
Creatinine Clearance Lab Values
Cultures
Cyclic Citrullinated Peptide (CCP) Lab Values
D-Dimer (DDI) Lab Values
Direct Bilirubin (Conjugated) Lab Values
Dysrhythmias Labs
Erythrocyte Sedimentation Rate (ESR) Lab Values
Fibrin Degradation Products (FDP) Lab Values
Fibrinogen Lab Values
Fluid Compartments
Free T4 (Thyroxine) Lab Values
Gamma Glutamyl Transferase (GGT) Lab Values
Glomerular Filtration Rate (GFR)
Glucagon Lab Values
Glucose Lab Values
Glucose Tolerance Test (GTT) Lab Values
Growth Hormone (GH) Lab Values
Hematocrit (Hct) Lab Values
Hemodynamics
Hemoglobin (Hbg) Lab Values
Hemoglobin A1c (HbA1C)
Hepatitis B Virus (HBV) Lab Values
Homocysteine (HCY) Lab Values
Ionized Calcium Lab Values
Iron (Fe) Lab Values
Ischemic (CVA) Stroke Labs
Lab Panels
Lab Values Course Introduction
Lactate Dehydrogenase (LDH) Lab Values
Lactic Acid
Lipase Lab Values
Lithium Lab Values
Liver Function Tests
Mean Corpuscular Volume (MCV) Lab Values
Mean Platelet Volume (MPV) Lab Values
Metabolic Acidosis (interpretation and nursing diagnosis)
Metabolic Alkalosis
Methemoglobin (MHGB) Lab Values
Myoglobin (MB) Lab Values
Order of Lab Draws
Pediatric Bronchiolitis Labs
Phosphorus (PO4) Blood Test Lab Values
Platelets (PLT) Lab Values
Pneumonia Labs
Potassium-K (Hyperkalemia, Hypokalemia)
Prealbumin (PAB) Lab Values
Pregnancy Labs
Procalcitonin (PCT) Lab Values
Prostate Specific Antigen (PSA) Lab Values
Protein (PROT) Lab Values
Protein in Urine Lab Values
Red Blood Cell (RBC) Lab Values
Red Cell Distribution Width (RDW) Lab Values
Renal (Kidney) Failure Labs
Respiratory Acidosis (interpretation and nursing interventions)
Respiratory Alkalosis
ROME – ABG (Arterial Blood Gas) Interpretation
Sepsis Labs
Shorthand Lab Values
Nursing Care and Pathophysiology for SIADH (Syndrome of Inappropriate antidiuretic Hormone Secretion)
Thyroid Stimulating Hormone (TSH) Lab Values
Thyroxine (T4) Lab Values
Total Bilirubin (T. Billi) Lab Values
Total Iron Binding Capacity (TIBC) Lab Values
Triiodothyronine (T3) Lab Values
Troponin I (cTNL) Lab Values
Urinalysis (UA)
Urine Culture and Sensitivity Lab Values
Vitamin B12 Lab Values
Vitamin D Lab Values
White Blood Cell (WBC) Lab Values