ABG (Arterial Blood Gas) Oxygenation

You're watching a preview. 300,000+ students are watching the full lesson.
Nichole Weaver
MSN/Ed,RN,CCRN
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For ABG (Arterial Blood Gas) Oxygenation

Hierarchy of O2 Delivery Methods (Cheatsheet)
Gas Exchange (Image)
Oxyhemoglobin Dissociation Curve (Image)
63 Must Know Lab Values (Book)
Hypoxia (Early Symptoms) (Picmonic)
Hypoxia (Late Symptoms) (Picmonic)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Overview

  1. Oxygenation Values on an ABG
    1. PaO2 – Partial Pressure of Oxygen
      1. Amount of oxygen dissolved in arterial blood
      2. How well the lungs are working to get O2 INTO the arterial blood
    2. SaO2 – Arterial Oxygen Saturation
      1. Percentage of hemoglobin molecules fully saturated with oxygen in arterial blood
      2. How well is the blood carrying/transporting O2 to the tissues
  2. Pulse Oximetry
    1. An indirect, peripheral measurement of oxygen saturation
    2. Affected by peripheral perfusion and temperature

Nursing Points

General

  1. Normal Values
    1. PaO2 → 80-100 mmHg
      1. On Room Air (21% FiO2)
    2. SaO2 → 95-100%
  2. Oxyhemoglobin Dissociation Curve
    1. Patient conditions affect ‘affinity’ of Hgb for O2
    2. Same SaO2, different PaO2

Assessment

  1. Low PaO2 or SaO2
    1. Cyanosis
    2. Dyspnea
    3. Tachypnea
    4. Cool skin
  2. Low PaO2 but high SaO2
    1. Limitations of SaO2
      1. Anemias
    2. Carbon Monoxide poisoning
      1. Headache, dizziness, dyspnea, no cyanosis
  3. P/F Ratio
    1. Normal PaO2, but on supplemental oxygen = something’s still wrong
    2. PaO2 ÷ FiO2 → Normal is >400
    3. Example
      1. PaO2 120
      2. FiO2 60%
      3. P/F Ratio = 120 / 0.60 = 200
        1. Indicates moderate to severe ARDS

Therapeutic Management

  1. Give supplemental O2
  2. Blood transfusions as needed
  3. May require mechanical ventilation if respiratory effort is not sufficient

Nursing Concepts

  1. Oxygenation
  2. Gas Exchange

Patient Education

  1. May need to help family understand the numbers, if they are anxious

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Transcript

Now that we have run through the all of the possible acid base imbalances, let’s talk in more detail about the oxygenation levels that you’ll find on an arterial blood gas.

First I just want to do a quick review of gas exchange. Remember that venous blood enters the lungs deoxygenated period carbon dioxide exits the bloodstream and is replaced by oxygen. Then, the oxygenated blood leaves the lungs and goes out to the body via the arterial system. So, when we are obtaining arterial blood, this is the process that we are evaluating. Are the patients getting appropriate amounts of oxygen into their blood?

So, there are two main values that we will receive on an arterial blood gas. The first is our PaO2. This stands for the partial pressure of oxygen, or the amount of oxygen dissolved in arterial blood. Again, this tells us how well the gas exchange is occurring in our lungs. Are we getting appropriate amounts of oxygen into our arterial blood? The SaO2 tell us how much of our hemoglobin is saturated with oxygen. So it’s giving us an idea of the capacity of our arterial blood to actually carry the oxygen out to our tissues. In either case if these levels are too low you’ll probably see cyanosis, maybe cool skin, and probably shortness of breath or tachypnea as the patient tries to compensate for the lack of oxygen. Now I want to give you some key critical thinking points about each one of these values.

First let’s think about the PaO2. If you remember from the very first lesson, the normal PaO2 is 80 to 100 mmHg. But remember what was special about that…this value is assuming the patient is on Room Air, which is 21% oxygen. We write that 21% FiO2, which means “fraction of inspired oxygen”. So – if you have a patient who has a PaO2 of 120, you tend to think “sweet! this guy’s doing great!”. Except – maybe that patient is actually on 60% FiO2 so, in reality, it’s not that great. So – to really evaluate how well YOUR specific patient is actually doing, we use what’s called the P/F ratio. It stands for PaO2 to FiO2 ratio and you get it by dividing the PaO2 by the FiO2. The normal P/F ratio is about 400 or above. Think about it – a PaO2 of 90 divided by 21% which is 0.21 – that gets you about 430. That’s a GREAT oxygenation level. When we see lower and lower P/F ratios, it means they have a lung injury or are in respiratory distress. Less than 200 is severe Acute Respiratory Distress Syndrome, which we talk about in the Respiratory Course. So, let’s use the example I just gave. Your patient has a PaO2 of 120 – divided by their FiO2 of 60% or 0.6. That gives you a P/F ratio of 200. So even though you see the PaO2 is greater than 100, this is actually NOT a good oxygenation value for this patient. Okay? So it’s super important that you’re looking at the big picture and you understand that this normal value is on Room Air!

Now, what I want you to know about the SaO2 is that there are some things that will affect its accuracy or reliability. Because of these things, you may see a high SpO2 but actually the patient is not oxygenating well at all. Remember that the SaO2 measures the saturation of hemoglobin. Each hemoglobin has 4 heme groups, so it can hold 4 oxygen molecules. If I have 100 hemoglobin molecules and 95 of them are fully saturated, I’ll have an SaO2 of 95%, which is good. But, there’s something called the oxyhemoglobin dissociation curve that compares PaO2 to SaO2. As the PaO2 rises, so does the SaO2 just like this curve. But, changes in temperature or pH levels can cause this curve to shift to the right or to the left. So, your SaO2 may not change at all, but meanwhile your PaO2 has changed significantly. Another thing that affects the SaO2 is Anemia. If instead of having 100 hemoglobin molecules, I only have 50, and 48 of them are saturated, I’ll have an SaO2 of 96% – which you’d think is great, right? BUT – my actual capacity to carry oxygen out to the tissues is actually quite low because I have WAY less hemoglobin molecules, right? It’s like it fakes you out! Another thing that does that is carbon monoxide. Carbon monoxide will take the place of oxygen on the hemoglobin and these lab values will tell you that it is 100% saturated…except it’s 100% saturated with the WRONG thing! So you really can’t carry enough oxygen to the tissues! And, don’t forget, if we’re looking at peripheral oxygen saturation or pulse ox, things like cold fingers or poor perfusion will also affect how reliable that number is, okay? Again, these are just some things you need to be thinking about critically when it comes to your patient. It doesn’t mean we ignore the oxygen saturation, by any means, but make sure you’re looking at the big picture of what’s going on with your patient.

As far as therapeutic management for any kind of hypoxia or hypoxemia, we always want to treat the underlying cause administer supplemental oxygen. If anemia is part of the problem we may also administer blood transfusions. And if there’s any kind of airway or breathing issue of course we want to provide airway support or mechanical ventilation. I know that I hammered this home in the respiratory acidosis lesson, but I’m going to say it again. Remember that providing supplemental oxygen to someone who is not breathing correctly or has an airway obstruction is not beneficial. Make sure that their airway is open and that their breathing is appropriate, and then provide oxygen. Yes, in the real world it only takes 5 seconds to apply oxygen. However, it also only takes 5 seconds to apply an EKG lead, but that is not going to help the patient. It’s not always about how quickly you can do something, but about the impact it’s actually going to have. So make sure that your patient’s airway and breathing are taking care of first, okay?

Let’s recap. The PaO2 or the partial pressure of oxygen dissolved in arterial blood gives us a good picture of the ability of the lungs to perform gas exchange and to get oxygen into the arterial blood. The normal value is 80 to 100 on room air. The SaO2 Or arterial oxygen saturation tells us how much of the hemoglobin is saturated with oxygen and therefore gives us an idea of our capacity to carry oxygen to the tissues. Make sure that you’re looking for things like anemia or signs of carbon monoxide poisoning that may indicate that your SaO2 level is not as reliable. Always remember to look at the big picture. The P/F ratio will help you get an idea of how bad the situation is for this specific patient by comparing the PaO2 to the FiO2. And of course we always want to treat the cause first. Make sure they have airway or breathing support, give supplemental oxygen, and possibly even give a blood transfusion if anemia is significant issue.

So, those are the basics of evaluating the oxygenation values on an arterial blood gas. I have attached the ARDS case study to this lesson as well, so that you can practice calculating P/F ratios. Make sure you check out all the other resources attached to this lesson as well. Now, go out and be your best selves today. And, as always, happy nursing!!

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Final Exam

Concepts Covered:

  • Terminology
  • Urinary System
  • Respiratory Disorders
  • Acute & Chronic Renal Disorders
  • Disorders of the Adrenal Gland
  • Oncology Disorders
  • Integumentary Disorders
  • Preoperative Nursing
  • Musculoskeletal Trauma
  • Integumentary Disorders
  • Respiratory Emergencies
  • Disorders of the Posterior Pituitary Gland
  • Hematologic Disorders
  • Renal Disorders
  • Labor Complications
  • Immunological Disorders
  • Upper GI Disorders
  • Neurological Emergencies
  • Disorders of Pancreas
  • Musculoskeletal Disorders
  • Cardiac Disorders
  • Disorders of the Thyroid & Parathyroid Glands
  • Integumentary Important Points
  • Pregnancy Risks
  • Urinary Disorders
  • Vascular Disorders
  • Central Nervous System Disorders – Brain
  • Nervous System
  • Lower GI Disorders
  • Intraoperative Nursing
  • Eating Disorders
  • Circulatory System
  • Postoperative Nursing
  • Liver & Gallbladder Disorders
  • Emergency Care of the Cardiac Patient
  • Female Reproductive Disorders
  • Shock
  • Respiratory System
  • Substance Abuse Disorders
  • Fetal Development
  • Proteins
  • Noninfectious Respiratory Disorder
  • Newborn Care
  • Statistics
  • Emergency Care of the Neurological Patient
  • Basics of Sociology
  • Bipolar Disorders
  • Infectious Respiratory Disorder

Study Plan Lessons

Diagnostic Testing Course Introduction
Fluid & Electrolytes Course Introduction
X-Ray (Xray)
X-Ray (Xray)
X-Ray (Xray)
Nursing Care and Pathophysiology of Acute Kidney (Renal) Injury (AKI)
Addisons Disease
Computed Tomography (CT)
Computed Tomography (CT)
Computed Tomography (CT)
Fluid Pressures
Informed Consent
Nursing Care and Pathophysiology for Cushings Syndrome
Fluid Shifts (Ascites) (Pleural Effusion)
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging (MRI)
Preoperative (Preop)Assessment
Pressure Ulcers/Pressure injuries (Braden scale)
CT & MR Angiography
CT & MR Angiography
Nursing Care and Pathophysiology for Diabetes Insipidus (DI)
Nursing Care and Pathophysiology for Disseminated Intravascular Coagulation (DIC)
Nursing Care and Pathophysiology of Glomerulonephritis
Isotonic Solutions (IV solutions)
Nursing Care and Pathophysiology of Osteoarthritis (OA)
Nursing Care and Pathophysiology for Pancreatitis
Preoperative (Preop) Education
Cerebral Angiography
Cerebral Angiography
Cerebral Angiography
Hypotonic Solutions (IV solutions)
Nursing Care and Pathophysiology of Osteoporosis
Nursing Care and Pathophysiology for Peptic Ulcer Disease (PUD)
Preoperative (Preop) Nursing Priorities
Thrombocytopenia
Blood Transfusions (Administration)
Cardiovascular Angiography
Cardiovascular Angiography
Cardiovascular Angiography
Fractures
Nursing Care and Pathophysiology for Hyperthyroidism
Hypertonic Solutions (IV solutions)
Integumentary (Skin) Important Points
Preload and Afterload
Nursing Care and Pathophysiology of Urinary Tract Infection (UTI)
Echocardiogram (Cardiac Echo)
Echocardiogram (Cardiac Echo)
Echocardiogram (Cardiac Echo)
Nursing Care and Pathophysiology for Hypothyroidism
Performing Cardiac (Heart) Monitoring
Ultrasound
Ultrasound
Interventional Radiology
Interventional Radiology
Nuclear Medicine
Cardiac Stress Test
Cardiac Stress Test
Pulmonary Function Test
Pulmonary Function Test
Endoscopy & EGD
Endoscopy & EGD
Colonoscopy
Colonoscopy
Mammogram
Biopsy
Biopsy
Electroencephalography (EEG)
Electroencephalography (EEG)
Electromyography (EMG)
Electromyography (EMG)
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology for Appendicitis
Nursing Care and Pathophysiology of Chronic Kidney (Renal) Disease (CKD)
Nursing Care and Pathophysiology of Diabetes Mellitus (DM)
General Anesthesia
Leukemia
Sodium-Na (Hypernatremia, Hyponatremia)
Calcium-Ca (Hypercalcemia, Hypocalcemia)
Diabetes Management
Dialysis & Other Renal Points
Local Anesthesia
Lymphoma
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Chloride-Cl (Hyperchloremia, Hypochloremia)
Nursing Care and Pathophysiology of Diabetic Ketoacidosis (DKA)
Moderate Sedation
Oncology Important Points
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Hyperglycaemic Hyperosmolar Non-ketotic syndrome (HHNS)
Nursing Care and Pathophysiology for Inflammatory Bowel Disease (IBD)
Magnesium-Mg (Hypomagnesemia, Hypermagnesemia)
Malignant Hyperthermia
Phosphorus-Phos
Nursing Care and Pathophysiology for Ulcerative Colitis(UC)
Nursing Care and Pathophysiology for Crohn’s Disease
Normal Sinus Rhythm
Post-Anesthesia Recovery
Nursing Care and Pathophysiology for Acquired Immune Deficiency Syndrome (AIDS)
Nursing Care and Pathophysiology for Cholecystitis
Nursing Care and Pathophysiology for Heart Failure (CHF)
Postoperative (Postop) Complications
Sinus Bradycardia
Nursing Care and Pathophysiology for Anaphylaxis
Nursing Care and Pathophysiology for Hepatitis (Liver Disease)
Sinus Tachycardia
Nursing Care and Pathophysiology for Cirrhosis (Liver Disease, Hepatic encephalopathy, Portal Hypertension, Esophageal Varices)
Discharge (DC) Teaching After Surgery
Pacemakers
Atrial Fibrillation (A Fib)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Nursing Care and Pathophysiology for Pelvic Inflammatory Disease (PID)
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology for Endometriosis
Nursing Care and Pathophysiology for Menopause
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Distributive Shock
ABG (Arterial Blood Gas) Interpretation-The Basics
ABG (Arterial Blood Gas) Oxygenation
ABG Course (Arterial Blood Gas) Introduction
ABGs Nursing Normal Lab Values
ABGs Tic-Tac-Toe interpretation Method
Absolute Neutrophil Count (ANC) Lab Values
Absolute Reticulocyte Count (ARC) Lab Values
Alanine Aminotransferase (ALT) Lab Values
Albumin Lab Values
Alkaline Phosphatase (ALK PHOS) Lab Values
Alpha-fetoprotein (AFP) Lab Values
Ammonia (NH3) Lab Values
Anion Gap
Antinuclear Antibody Lab Values
Base Excess & Deficit
Beta Hydroxy (BHB) Lab Values
Bicarbonate (HCO3) Lab Values
Blood Urea Nitrogen (BUN) Lab Values
Brain Natriuretic Peptide (BNP) Lab Values
C-Reactive Protein (CRP) Lab Values
Carbon Dioxide (Co2) Lab Values
Carboxyhemoglobin Lab Values
Cardiac (Heart) Enzymes
Cholesterol (Chol) Lab Values
Coagulation Studies (PT, PTT, INR)
Congestive Heart Failure (CHF) Labs
COPD (Chronic Obstructive Pulmonary Disease) Labs
Cortisol Lab Vales
Creatine Phosphokinase (CPK) Lab Values
Creatinine (Cr) Lab Values
Creatinine Clearance Lab Values
Cultures
Cyclic Citrullinated Peptide (CCP) Lab Values
D-Dimer (DDI) Lab Values
Direct Bilirubin (Conjugated) Lab Values
Dysrhythmias Labs
Erythrocyte Sedimentation Rate (ESR) Lab Values
Fibrin Degradation Products (FDP) Lab Values
Fibrinogen Lab Values
Fluid Compartments
Free T4 (Thyroxine) Lab Values
Gamma Glutamyl Transferase (GGT) Lab Values
Glomerular Filtration Rate (GFR)
Glucagon Lab Values
Glucose Lab Values
Glucose Tolerance Test (GTT) Lab Values
Growth Hormone (GH) Lab Values
Hematocrit (Hct) Lab Values
Hemodynamics
Hemoglobin (Hbg) Lab Values
Hemoglobin A1c (HbA1C)
Hepatitis B Virus (HBV) Lab Values
Homocysteine (HCY) Lab Values
Ionized Calcium Lab Values
Iron (Fe) Lab Values
Ischemic (CVA) Stroke Labs
Lab Panels
Lab Values Course Introduction
Lactate Dehydrogenase (LDH) Lab Values
Lactic Acid
Lipase Lab Values
Lithium Lab Values
Liver Function Tests
Mean Corpuscular Volume (MCV) Lab Values
Mean Platelet Volume (MPV) Lab Values
Metabolic Acidosis (interpretation and nursing diagnosis)
Metabolic Alkalosis
Methemoglobin (MHGB) Lab Values
Myoglobin (MB) Lab Values
Order of Lab Draws
Pediatric Bronchiolitis Labs
Phosphorus (PO4) Blood Test Lab Values
Platelets (PLT) Lab Values
Pneumonia Labs
Potassium-K (Hyperkalemia, Hypokalemia)
Prealbumin (PAB) Lab Values
Pregnancy Labs
Procalcitonin (PCT) Lab Values
Prostate Specific Antigen (PSA) Lab Values
Protein (PROT) Lab Values
Protein in Urine Lab Values
Red Blood Cell (RBC) Lab Values
Red Cell Distribution Width (RDW) Lab Values
Renal (Kidney) Failure Labs
Respiratory Acidosis (interpretation and nursing interventions)
Respiratory Alkalosis
ROME – ABG (Arterial Blood Gas) Interpretation
Sepsis Labs
Shorthand Lab Values
Nursing Care and Pathophysiology for SIADH (Syndrome of Inappropriate antidiuretic Hormone Secretion)
Thyroid Stimulating Hormone (TSH) Lab Values
Thyroxine (T4) Lab Values
Total Bilirubin (T. Billi) Lab Values
Total Iron Binding Capacity (TIBC) Lab Values
Triiodothyronine (T3) Lab Values
Troponin I (cTNL) Lab Values
Urinalysis (UA)
Urine Culture and Sensitivity Lab Values
Vitamin B12 Lab Values
Vitamin D Lab Values
White Blood Cell (WBC) Lab Values