Hypertonic Solutions (IV solutions)

You're watching a preview. 300,000+ students are watching the full lesson.
Nichole Weaver
MSN/Ed,RN,CCRN
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For Hypertonic Solutions (IV solutions)

IV Solutions (Cheatsheet)
Tonicity of Fluids (Image)
Hypertonic Solutions (Image)
IV Solutions (Picmonic)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Overview

  1. Hypertonic solutions
    1. Higher osmolarity than blood
    2. >375  mOsm/L

Nursing Points

General

  1. Examples
    1. 1.5%, 3%, or 5% Sodium Chloride
    2. D5NS
    3. D5LR
    4. D10W
    5. D5 ½ NS (406 mOsm/L in the bag)
      1. May actually act isotonic in the body once sugar is used up

Assessment

  1. Fluid shifts
    1. INTO vessels
    2. OUT of cells
    3. OUT of interstitial spaces
  2. Effects on cells
    1. Cells shrink

Therapeutic Management

  1. Indications for use
    1. Hyponatremia
    2. Cerebral Edema
    3. Other edema
  2. Contraindications
    1. >3% in Central Line ONLY
    2. Heart failure / Renal failure
      1. Volume Overload
    3. Correct sodium SLOWLY

Nursing Concepts

  1. Fluid & Electrolyte Balance

Patient Education

  1. Report neuro changes (weakness, paresthesias, confusion, etc.)

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Transcript

In this lesson, we’re going to talk about hypertonic solutions. What are they, how do they affect the body, and why do we use them?

Again, let’s quickly review what we mean when we talk about tonicity. Tonicity compares the osmolarity of two solutions. In these cases, we’re comparing an IV fluid to blood plasma. If we have a solution that is less concentrated than blood plasma, or has a lower osmolarity, it’s considered hypotonic. If the solution has a similar concentration, or osmolarity, we call it an isotonic solution – iso meaning ‘same’. If the solution has a higher concentration or osmolarity, we call it a hypertonic solution.

So, when we’re looking at a hypertonic solution – that means it has an osmolarity that is HIGHER than the blood plasma, typically greater than 375 mOsm/L.

Some examples are really anything higher than 0.9% sodium chloride – so 1.5%, 3%, or 5% sodium chloride. To give you an idea of how powerful hypertonic these are – the osmolarity of 3% saline is 1026 mOsm/L. That’s literally over 3 times more concentrated than the blood plasma. Other ones would be adding 5% dextrose to an isotonic solution like NS or LR, or having more than 5% dextrose in water – specifically we can use 10% dextrose in water, or D10W. We also see that D5½NS is hypertonic in the bag. But something similar happens here that happens with D5W. The dextrose portion can get used up and sometimes cause this to be more isotonic than anything else. The osmolarity is just over 400 mOsm/L, so once you use up those sugar molecules, the osmolarity drops a lot closer to the actual osmolarity of the blood itself. We use this a lot in patients with DKA actually, once we’ve brought their sugars down we give them this to help balance their sugars and maintain the fluid in their vessels. So it’s kind of a tricky hypertonic one. The most common things you’ll see us give that are hypertonic are 3% Saline, D5NS and D10W.

As we already mentioned, the osmolarity of a hypertonic solution is greater than 375 mOsm/L, remember that blood is about 275 – 295 mOsm/L. So we’re introducing a solution that is much more concentrated into the blood vessels, and the blood plasma will now be more concentrated than it was before, compared to the cells. When you have a higher concentration on one side of a semipermeable membrane, which way is the fluid going to shift? The fluid will want to shift toward that side, right? So what we see is the fluid shifting out of the cells and into the blood plasma. That means the cells are going to shrink. Of course, if they shrink too much, they won’t work properly. But, as you see…sometimes we’re actually trying to get them to shrink.

So why would we use one of these super concentrated solutions? The two MAIN reasons you’ll see it used in the clinical setting are hyponatremia, or low sodium levels, and cerebral edema. Remember normal sodium levels are 135-145…but when I say low sodium, in this case, I don’t mean 132. We wouldn’t give a hypertonic solution for that. I’m talking in the 120’s or even 110’s – super dangerous range. We’re gonna give a 3% sodium chloride solution to try to get that sodium level back up. Now – we talk about this in more detail in the hyponatremia lesson, but it’s SO important that you know that we shouldn’t correct sodium too quickly because it can cause severe neurologic damage. Make sure you check out that lesson to learn more. The other main reason we use hypertonic solutions is for edema – usually cerebral edema, but it could also be other kinds of edema. Again, the goal is to shift fluid out of the cells and tissues and into the bloodstream. This can help alleviate the pressure in the brain or any other issues caused by this edema. Again, sometimes we actually want the cells to shrink a bit. Other precautions you need to know is that hypertonic saline – that’s 3% or higher, and at some facilities even the 1.5% saline, – MUST be given in a central line. It is way too caustic and hypertonic to be used peripherally, it can cause a lot of issues. Also, remember the whole point here is to shift fluid into the blood vessels, so we need to use extreme caution in any patient at risk for volume overload like heart failure or renal failure. So we watch for signs of overload like shortness of breath, decreasing oxygenation, or crackles in the lungs.

Okay let’s recap – remember that a hypertonic solution has more solute than the blood plasma – so it’s going to make the blood more concentrated than it was before. That will cause fluid to shift into the blood plasma and out of the cells and tissues. Examples are hypertonic saline, D5NS or D5LR, and D10W. The main reason we use hypertonic solutions is to correct hyponatremia and treat cerebral edema. Remember that we have to correct sodium SLOWLY to prevent neurologic damage – more about that in the hyponatremia lesson. We also want to use a central line or a central venous catheter when giving hypertonic saline and we use extreme caution to prevent volume overload in patients with heart or kidney failure.

So that’s it for hypertonic solutions – make sure you have also checked out the isotonic and hypotonic solutions lessons, as well as all the resources attached to this lesson. Now, go out and be your best selves today. And, as always, happy nursing!!

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Final Exam

Concepts Covered:

  • Terminology
  • Urinary System
  • Respiratory Disorders
  • Acute & Chronic Renal Disorders
  • Disorders of the Adrenal Gland
  • Oncology Disorders
  • Integumentary Disorders
  • Preoperative Nursing
  • Musculoskeletal Trauma
  • Integumentary Disorders
  • Respiratory Emergencies
  • Disorders of the Posterior Pituitary Gland
  • Hematologic Disorders
  • Renal Disorders
  • Labor Complications
  • Immunological Disorders
  • Upper GI Disorders
  • Neurological Emergencies
  • Disorders of Pancreas
  • Musculoskeletal Disorders
  • Cardiac Disorders
  • Disorders of the Thyroid & Parathyroid Glands
  • Integumentary Important Points
  • Pregnancy Risks
  • Urinary Disorders
  • Vascular Disorders
  • Central Nervous System Disorders – Brain
  • Nervous System
  • Lower GI Disorders
  • Intraoperative Nursing
  • Eating Disorders
  • Circulatory System
  • Postoperative Nursing
  • Liver & Gallbladder Disorders
  • Emergency Care of the Cardiac Patient
  • Female Reproductive Disorders
  • Shock
  • Respiratory System
  • Substance Abuse Disorders
  • Fetal Development
  • Proteins
  • Noninfectious Respiratory Disorder
  • Newborn Care
  • Statistics
  • Emergency Care of the Neurological Patient
  • Basics of Sociology
  • Bipolar Disorders
  • Infectious Respiratory Disorder

Study Plan Lessons

Diagnostic Testing Course Introduction
Fluid & Electrolytes Course Introduction
X-Ray (Xray)
X-Ray (Xray)
X-Ray (Xray)
Nursing Care and Pathophysiology of Acute Kidney (Renal) Injury (AKI)
Addisons Disease
Computed Tomography (CT)
Computed Tomography (CT)
Computed Tomography (CT)
Fluid Pressures
Informed Consent
Nursing Care and Pathophysiology for Cushings Syndrome
Fluid Shifts (Ascites) (Pleural Effusion)
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging (MRI)
Preoperative (Preop)Assessment
Pressure Ulcers/Pressure injuries (Braden scale)
CT & MR Angiography
CT & MR Angiography
Nursing Care and Pathophysiology for Diabetes Insipidus (DI)
Nursing Care and Pathophysiology for Disseminated Intravascular Coagulation (DIC)
Nursing Care and Pathophysiology of Glomerulonephritis
Isotonic Solutions (IV solutions)
Nursing Care and Pathophysiology of Osteoarthritis (OA)
Nursing Care and Pathophysiology for Pancreatitis
Preoperative (Preop) Education
Cerebral Angiography
Cerebral Angiography
Cerebral Angiography
Hypotonic Solutions (IV solutions)
Nursing Care and Pathophysiology of Osteoporosis
Nursing Care and Pathophysiology for Peptic Ulcer Disease (PUD)
Preoperative (Preop) Nursing Priorities
Thrombocytopenia
Blood Transfusions (Administration)
Cardiovascular Angiography
Cardiovascular Angiography
Cardiovascular Angiography
Fractures
Nursing Care and Pathophysiology for Hyperthyroidism
Hypertonic Solutions (IV solutions)
Integumentary (Skin) Important Points
Preload and Afterload
Nursing Care and Pathophysiology of Urinary Tract Infection (UTI)
Echocardiogram (Cardiac Echo)
Echocardiogram (Cardiac Echo)
Echocardiogram (Cardiac Echo)
Nursing Care and Pathophysiology for Hypothyroidism
Performing Cardiac (Heart) Monitoring
Ultrasound
Ultrasound
Interventional Radiology
Interventional Radiology
Nuclear Medicine
Cardiac Stress Test
Cardiac Stress Test
Pulmonary Function Test
Pulmonary Function Test
Endoscopy & EGD
Endoscopy & EGD
Colonoscopy
Colonoscopy
Mammogram
Biopsy
Biopsy
Electroencephalography (EEG)
Electroencephalography (EEG)
Electromyography (EMG)
Electromyography (EMG)
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology for Appendicitis
Nursing Care and Pathophysiology of Chronic Kidney (Renal) Disease (CKD)
Nursing Care and Pathophysiology of Diabetes Mellitus (DM)
General Anesthesia
Leukemia
Sodium-Na (Hypernatremia, Hyponatremia)
Calcium-Ca (Hypercalcemia, Hypocalcemia)
Diabetes Management
Dialysis & Other Renal Points
Local Anesthesia
Lymphoma
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Chloride-Cl (Hyperchloremia, Hypochloremia)
Nursing Care and Pathophysiology of Diabetic Ketoacidosis (DKA)
Moderate Sedation
Oncology Important Points
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Hyperglycaemic Hyperosmolar Non-ketotic syndrome (HHNS)
Nursing Care and Pathophysiology for Inflammatory Bowel Disease (IBD)
Magnesium-Mg (Hypomagnesemia, Hypermagnesemia)
Malignant Hyperthermia
Phosphorus-Phos
Nursing Care and Pathophysiology for Ulcerative Colitis(UC)
Nursing Care and Pathophysiology for Crohn’s Disease
Normal Sinus Rhythm
Post-Anesthesia Recovery
Nursing Care and Pathophysiology for Acquired Immune Deficiency Syndrome (AIDS)
Nursing Care and Pathophysiology for Cholecystitis
Nursing Care and Pathophysiology for Heart Failure (CHF)
Postoperative (Postop) Complications
Sinus Bradycardia
Nursing Care and Pathophysiology for Anaphylaxis
Nursing Care and Pathophysiology for Hepatitis (Liver Disease)
Sinus Tachycardia
Nursing Care and Pathophysiology for Cirrhosis (Liver Disease, Hepatic encephalopathy, Portal Hypertension, Esophageal Varices)
Discharge (DC) Teaching After Surgery
Pacemakers
Atrial Fibrillation (A Fib)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Nursing Care and Pathophysiology for Pelvic Inflammatory Disease (PID)
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology for Endometriosis
Nursing Care and Pathophysiology for Menopause
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Distributive Shock
ABG (Arterial Blood Gas) Interpretation-The Basics
ABG (Arterial Blood Gas) Oxygenation
ABG Course (Arterial Blood Gas) Introduction
ABGs Nursing Normal Lab Values
ABGs Tic-Tac-Toe interpretation Method
Absolute Neutrophil Count (ANC) Lab Values
Absolute Reticulocyte Count (ARC) Lab Values
Alanine Aminotransferase (ALT) Lab Values
Albumin Lab Values
Alkaline Phosphatase (ALK PHOS) Lab Values
Alpha-fetoprotein (AFP) Lab Values
Ammonia (NH3) Lab Values
Anion Gap
Antinuclear Antibody Lab Values
Base Excess & Deficit
Beta Hydroxy (BHB) Lab Values
Bicarbonate (HCO3) Lab Values
Blood Urea Nitrogen (BUN) Lab Values
Brain Natriuretic Peptide (BNP) Lab Values
C-Reactive Protein (CRP) Lab Values
Carbon Dioxide (Co2) Lab Values
Carboxyhemoglobin Lab Values
Cardiac (Heart) Enzymes
Cholesterol (Chol) Lab Values
Coagulation Studies (PT, PTT, INR)
Congestive Heart Failure (CHF) Labs
COPD (Chronic Obstructive Pulmonary Disease) Labs
Cortisol Lab Vales
Creatine Phosphokinase (CPK) Lab Values
Creatinine (Cr) Lab Values
Creatinine Clearance Lab Values
Cultures
Cyclic Citrullinated Peptide (CCP) Lab Values
D-Dimer (DDI) Lab Values
Direct Bilirubin (Conjugated) Lab Values
Dysrhythmias Labs
Erythrocyte Sedimentation Rate (ESR) Lab Values
Fibrin Degradation Products (FDP) Lab Values
Fibrinogen Lab Values
Fluid Compartments
Free T4 (Thyroxine) Lab Values
Gamma Glutamyl Transferase (GGT) Lab Values
Glomerular Filtration Rate (GFR)
Glucagon Lab Values
Glucose Lab Values
Glucose Tolerance Test (GTT) Lab Values
Growth Hormone (GH) Lab Values
Hematocrit (Hct) Lab Values
Hemodynamics
Hemoglobin (Hbg) Lab Values
Hemoglobin A1c (HbA1C)
Hepatitis B Virus (HBV) Lab Values
Homocysteine (HCY) Lab Values
Ionized Calcium Lab Values
Iron (Fe) Lab Values
Ischemic (CVA) Stroke Labs
Lab Panels
Lab Values Course Introduction
Lactate Dehydrogenase (LDH) Lab Values
Lactic Acid
Lipase Lab Values
Lithium Lab Values
Liver Function Tests
Mean Corpuscular Volume (MCV) Lab Values
Mean Platelet Volume (MPV) Lab Values
Metabolic Acidosis (interpretation and nursing diagnosis)
Metabolic Alkalosis
Methemoglobin (MHGB) Lab Values
Myoglobin (MB) Lab Values
Order of Lab Draws
Pediatric Bronchiolitis Labs
Phosphorus (PO4) Blood Test Lab Values
Platelets (PLT) Lab Values
Pneumonia Labs
Potassium-K (Hyperkalemia, Hypokalemia)
Prealbumin (PAB) Lab Values
Pregnancy Labs
Procalcitonin (PCT) Lab Values
Prostate Specific Antigen (PSA) Lab Values
Protein (PROT) Lab Values
Protein in Urine Lab Values
Red Blood Cell (RBC) Lab Values
Red Cell Distribution Width (RDW) Lab Values
Renal (Kidney) Failure Labs
Respiratory Acidosis (interpretation and nursing interventions)
Respiratory Alkalosis
ROME – ABG (Arterial Blood Gas) Interpretation
Sepsis Labs
Shorthand Lab Values
Nursing Care and Pathophysiology for SIADH (Syndrome of Inappropriate antidiuretic Hormone Secretion)
Thyroid Stimulating Hormone (TSH) Lab Values
Thyroxine (T4) Lab Values
Total Bilirubin (T. Billi) Lab Values
Total Iron Binding Capacity (TIBC) Lab Values
Triiodothyronine (T3) Lab Values
Troponin I (cTNL) Lab Values
Urinalysis (UA)
Urine Culture and Sensitivity Lab Values
Vitamin B12 Lab Values
Vitamin D Lab Values
White Blood Cell (WBC) Lab Values