Iron (Fe) Lab Values

You're watching a preview. 300,000+ students are watching the full lesson.
Abby Rose
BSN,RN
Master
To Master a topic you must score > 80% on the lesson quiz.

Included In This Lesson

Study Tools For Iron (Fe) Lab Values

63 Must Know Lab Values (Cheatsheet)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Objective:

Determine the significance and clinical use of iron levels in clinical practice

 

Lab Test Name:

Iron – Fe

 

Description:

Measures the amount of Fe in the bloodstream. 

Evaluates: 

  • Sufficient Fe level 
    • oxygen transport 
    • proper hemoglobin & RBC production

Iron (Fe) is an element that is an important component of hemoglobin in red blood cells.

Iron aids hemoglobin’s transport of oxygen from the lungs to all the cells of the body. 

The storage form of iron is ferritin. Iron is transported in the blood by a protein called transferrin.

 

Indications:

Identify:

  • Blood loss
  • Hemochromatosis
  • Malabsorption of iron
  • Iron overload

Type of anemia:

  • Thalassemia
  • Sideroblastic anemia
  • Iron deficient anemia

 

Normal Therapeutic Values:

Normal – 

50-175 μg/dL

Collection:

  • plasma separator tube

 

What would cause increased levels:

What would cause Increased Levels of Iron?

  • Hemochromatosis
  • Lead toxicity
  • Iron poisoning
  • Acute liver disease
  • Multiple blood transfusions
  • Hemolytic anemia
  • Sideroblastic anemia

 

What would cause decreased levels:

What would cause Decreased Levels of Iron?

  • Blood Loss:
    • Gastrointestinal (GI) bleeding
    • Heavy menstruation
    • Chronic hematuria
  • Hypothyroidism
  • Iron-deficiency anemia
  • Inadequate absorption of iron

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Transcript

Hey everyone. My name is Abby and I’m with nursing.com. In this lesson, we’ll talk about iron levels, their normal value, as well as times when we might see them increase or decrease, and why we should draw this lab. Let’s dive in!

 

An iron lab measures the amount of iron in the blood. Iron is in an element that is an important component of hemoglobin, which resides in red blood cells. It’s so important because iron aids hemoglobin in the transport of oxygen from the lungs to all of the cells in the body. The storage form of iron is called ferritin. Ferritin is measured in a separate lab, but you can see here is a cartoon version if you will, of ferritin, and you can see how iron is stored within it. Iron is bound and transported in the blood, in ferritin via transferrin. That’s how it’s bound to the ferritin. 

 

Some clinical indications for taking an iron lab would be, if there has been a major amount of blood loss, hemochromatosis, like this individual with the thin legs in the picture, if there’s a known mal-absorption of iron, so this could be some type of autoimmune disease or a poor diet, um, even different types of anemia, or it could be to identify an iron overload. It also helps to determine the etiology of certain anemias, uh, whether that be thalassemia, or sideroblastic anemia, or iron deficiency anemia. 

 

Normal lab values for iron are between 50 and 175 micrograms per deciliter. It’s collected in a plasma separator tube like this green one here. An increase will be seen in the case of hemochromatosis, like we saw with that gentleman with dark legs. It can also be increased in lead toxicity or in iron poisoning, so maybe iron supplements were overtaken. It can also be increased in acute liver disease, because iron can bind itself within organs and cause a lot of organ damage. It can also be increased in patients that have multiple blood transfusions. It’s also going to be increased in hemolytic anemia because those lead red blood cells are blasting open and spitting out contents like the hemoglobin and iron, and also, sideroblastic anemia. It will be decreased in the case of blood loss, that could be from a heavy GI bleed, it could even be from heavy menstruation, or chronic hematuria. It’s also related to hypothyroidism and of course, iron deficiency anemia. And then, as we mentioned, it can also be due to inadequate absorption. 

 

Linchpins for this lesson are that the iron lab measures iron concentration in the blood to evaluate for blood loss, anemias, and liver disease. Normal values are between 50 and 175 micrograms per deciliter, and we would see an increased value if there was an excess intake of iron, like in poisoning, those that get regular blood transfusions, and in certain anemias, like hemolytic anemia. It’s going to be decreased if there’s blood loss, because of course, if there’s blood loss, then we have fewer red blood cells. If we have fewer red blood cells, we have less hemoglobin, and if we have less hemoglobin with iron bound to it, right, it’s all making sense. It’s also linked to an iron deficiency and a lack of absorption. 

 

Now you all did great on this lesson. I hope that contributed to a great understanding. Now go out, be your best self today and as always, happy nursing.

References:

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Final Exam

Concepts Covered:

  • Terminology
  • Urinary System
  • Respiratory Disorders
  • Acute & Chronic Renal Disorders
  • Disorders of the Adrenal Gland
  • Oncology Disorders
  • Integumentary Disorders
  • Preoperative Nursing
  • Musculoskeletal Trauma
  • Integumentary Disorders
  • Respiratory Emergencies
  • Disorders of the Posterior Pituitary Gland
  • Hematologic Disorders
  • Renal Disorders
  • Labor Complications
  • Immunological Disorders
  • Upper GI Disorders
  • Neurological Emergencies
  • Disorders of Pancreas
  • Musculoskeletal Disorders
  • Cardiac Disorders
  • Disorders of the Thyroid & Parathyroid Glands
  • Integumentary Important Points
  • Pregnancy Risks
  • Urinary Disorders
  • Vascular Disorders
  • Central Nervous System Disorders – Brain
  • Nervous System
  • Lower GI Disorders
  • Intraoperative Nursing
  • Eating Disorders
  • Circulatory System
  • Postoperative Nursing
  • Liver & Gallbladder Disorders
  • Emergency Care of the Cardiac Patient
  • Female Reproductive Disorders
  • Shock
  • Respiratory System
  • Substance Abuse Disorders
  • Fetal Development
  • Proteins
  • Noninfectious Respiratory Disorder
  • Newborn Care
  • Statistics
  • Emergency Care of the Neurological Patient
  • Basics of Sociology
  • Bipolar Disorders
  • Infectious Respiratory Disorder

Study Plan Lessons

Diagnostic Testing Course Introduction
Fluid & Electrolytes Course Introduction
X-Ray (Xray)
X-Ray (Xray)
X-Ray (Xray)
Nursing Care and Pathophysiology of Acute Kidney (Renal) Injury (AKI)
Addisons Disease
Computed Tomography (CT)
Computed Tomography (CT)
Computed Tomography (CT)
Fluid Pressures
Informed Consent
Nursing Care and Pathophysiology for Cushings Syndrome
Fluid Shifts (Ascites) (Pleural Effusion)
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging (MRI)
Preoperative (Preop)Assessment
Pressure Ulcers/Pressure injuries (Braden scale)
CT & MR Angiography
CT & MR Angiography
Nursing Care and Pathophysiology for Diabetes Insipidus (DI)
Nursing Care and Pathophysiology for Disseminated Intravascular Coagulation (DIC)
Nursing Care and Pathophysiology of Glomerulonephritis
Isotonic Solutions (IV solutions)
Nursing Care and Pathophysiology of Osteoarthritis (OA)
Nursing Care and Pathophysiology for Pancreatitis
Preoperative (Preop) Education
Cerebral Angiography
Cerebral Angiography
Cerebral Angiography
Hypotonic Solutions (IV solutions)
Nursing Care and Pathophysiology of Osteoporosis
Nursing Care and Pathophysiology for Peptic Ulcer Disease (PUD)
Preoperative (Preop) Nursing Priorities
Thrombocytopenia
Blood Transfusions (Administration)
Cardiovascular Angiography
Cardiovascular Angiography
Cardiovascular Angiography
Fractures
Nursing Care and Pathophysiology for Hyperthyroidism
Hypertonic Solutions (IV solutions)
Integumentary (Skin) Important Points
Preload and Afterload
Nursing Care and Pathophysiology of Urinary Tract Infection (UTI)
Echocardiogram (Cardiac Echo)
Echocardiogram (Cardiac Echo)
Echocardiogram (Cardiac Echo)
Nursing Care and Pathophysiology for Hypothyroidism
Performing Cardiac (Heart) Monitoring
Ultrasound
Ultrasound
Interventional Radiology
Interventional Radiology
Nuclear Medicine
Cardiac Stress Test
Cardiac Stress Test
Pulmonary Function Test
Pulmonary Function Test
Endoscopy & EGD
Endoscopy & EGD
Colonoscopy
Colonoscopy
Mammogram
Biopsy
Biopsy
Electroencephalography (EEG)
Electroencephalography (EEG)
Electromyography (EMG)
Electromyography (EMG)
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology for Appendicitis
Nursing Care and Pathophysiology of Chronic Kidney (Renal) Disease (CKD)
Nursing Care and Pathophysiology of Diabetes Mellitus (DM)
General Anesthesia
Leukemia
Sodium-Na (Hypernatremia, Hyponatremia)
Calcium-Ca (Hypercalcemia, Hypocalcemia)
Diabetes Management
Dialysis & Other Renal Points
Local Anesthesia
Lymphoma
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Chloride-Cl (Hyperchloremia, Hypochloremia)
Nursing Care and Pathophysiology of Diabetic Ketoacidosis (DKA)
Moderate Sedation
Oncology Important Points
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Hyperglycaemic Hyperosmolar Non-ketotic syndrome (HHNS)
Nursing Care and Pathophysiology for Inflammatory Bowel Disease (IBD)
Magnesium-Mg (Hypomagnesemia, Hypermagnesemia)
Malignant Hyperthermia
Phosphorus-Phos
Nursing Care and Pathophysiology for Ulcerative Colitis(UC)
Nursing Care and Pathophysiology for Crohn’s Disease
Normal Sinus Rhythm
Post-Anesthesia Recovery
Nursing Care and Pathophysiology for Acquired Immune Deficiency Syndrome (AIDS)
Nursing Care and Pathophysiology for Cholecystitis
Nursing Care and Pathophysiology for Heart Failure (CHF)
Postoperative (Postop) Complications
Sinus Bradycardia
Nursing Care and Pathophysiology for Anaphylaxis
Nursing Care and Pathophysiology for Hepatitis (Liver Disease)
Sinus Tachycardia
Nursing Care and Pathophysiology for Cirrhosis (Liver Disease, Hepatic encephalopathy, Portal Hypertension, Esophageal Varices)
Discharge (DC) Teaching After Surgery
Pacemakers
Atrial Fibrillation (A Fib)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Nursing Care and Pathophysiology for Pelvic Inflammatory Disease (PID)
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology for Endometriosis
Nursing Care and Pathophysiology for Menopause
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Distributive Shock
ABG (Arterial Blood Gas) Interpretation-The Basics
ABG (Arterial Blood Gas) Oxygenation
ABG Course (Arterial Blood Gas) Introduction
ABGs Nursing Normal Lab Values
ABGs Tic-Tac-Toe interpretation Method
Absolute Neutrophil Count (ANC) Lab Values
Absolute Reticulocyte Count (ARC) Lab Values
Alanine Aminotransferase (ALT) Lab Values
Albumin Lab Values
Alkaline Phosphatase (ALK PHOS) Lab Values
Alpha-fetoprotein (AFP) Lab Values
Ammonia (NH3) Lab Values
Anion Gap
Antinuclear Antibody Lab Values
Base Excess & Deficit
Beta Hydroxy (BHB) Lab Values
Bicarbonate (HCO3) Lab Values
Blood Urea Nitrogen (BUN) Lab Values
Brain Natriuretic Peptide (BNP) Lab Values
C-Reactive Protein (CRP) Lab Values
Carbon Dioxide (Co2) Lab Values
Carboxyhemoglobin Lab Values
Cardiac (Heart) Enzymes
Cholesterol (Chol) Lab Values
Coagulation Studies (PT, PTT, INR)
Congestive Heart Failure (CHF) Labs
COPD (Chronic Obstructive Pulmonary Disease) Labs
Cortisol Lab Vales
Creatine Phosphokinase (CPK) Lab Values
Creatinine (Cr) Lab Values
Creatinine Clearance Lab Values
Cultures
Cyclic Citrullinated Peptide (CCP) Lab Values
D-Dimer (DDI) Lab Values
Direct Bilirubin (Conjugated) Lab Values
Dysrhythmias Labs
Erythrocyte Sedimentation Rate (ESR) Lab Values
Fibrin Degradation Products (FDP) Lab Values
Fibrinogen Lab Values
Fluid Compartments
Free T4 (Thyroxine) Lab Values
Gamma Glutamyl Transferase (GGT) Lab Values
Glomerular Filtration Rate (GFR)
Glucagon Lab Values
Glucose Lab Values
Glucose Tolerance Test (GTT) Lab Values
Growth Hormone (GH) Lab Values
Hematocrit (Hct) Lab Values
Hemodynamics
Hemoglobin (Hbg) Lab Values
Hemoglobin A1c (HbA1C)
Hepatitis B Virus (HBV) Lab Values
Homocysteine (HCY) Lab Values
Ionized Calcium Lab Values
Iron (Fe) Lab Values
Ischemic (CVA) Stroke Labs
Lab Panels
Lab Values Course Introduction
Lactate Dehydrogenase (LDH) Lab Values
Lactic Acid
Lipase Lab Values
Lithium Lab Values
Liver Function Tests
Mean Corpuscular Volume (MCV) Lab Values
Mean Platelet Volume (MPV) Lab Values
Metabolic Acidosis (interpretation and nursing diagnosis)
Metabolic Alkalosis
Methemoglobin (MHGB) Lab Values
Myoglobin (MB) Lab Values
Order of Lab Draws
Pediatric Bronchiolitis Labs
Phosphorus (PO4) Blood Test Lab Values
Platelets (PLT) Lab Values
Pneumonia Labs
Potassium-K (Hyperkalemia, Hypokalemia)
Prealbumin (PAB) Lab Values
Pregnancy Labs
Procalcitonin (PCT) Lab Values
Prostate Specific Antigen (PSA) Lab Values
Protein (PROT) Lab Values
Protein in Urine Lab Values
Red Blood Cell (RBC) Lab Values
Red Cell Distribution Width (RDW) Lab Values
Renal (Kidney) Failure Labs
Respiratory Acidosis (interpretation and nursing interventions)
Respiratory Alkalosis
ROME – ABG (Arterial Blood Gas) Interpretation
Sepsis Labs
Shorthand Lab Values
Nursing Care and Pathophysiology for SIADH (Syndrome of Inappropriate antidiuretic Hormone Secretion)
Thyroid Stimulating Hormone (TSH) Lab Values
Thyroxine (T4) Lab Values
Total Bilirubin (T. Billi) Lab Values
Total Iron Binding Capacity (TIBC) Lab Values
Triiodothyronine (T3) Lab Values
Troponin I (cTNL) Lab Values
Urinalysis (UA)
Urine Culture and Sensitivity Lab Values
Vitamin B12 Lab Values
Vitamin D Lab Values
White Blood Cell (WBC) Lab Values