Preload and Afterload

You're watching a preview. 300,000+ students are watching the full lesson.
Jon Haws
BS, BSN,RN,CCRN Alumnus
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For Preload and Afterload

Hemodynamic Values (Cheatsheet)
Frank Starling Curve (Image)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

NOTE: At around 08:20 Jon says PVR is peripheral vascular resistance, but it should be pulmonary vascular resistance. This is correct in the outline and transcript.


Overview of Preload and Afterload

Preload, Afterload, and Contractility play a role in determining stroke volume, which determines Cardiac Output.

Nursing Points

General

  1. CO = SV x HR.
  2. Stroke Volume = Preload, Afterload, Contractility
  3. Preload
    1. Stretch during filling
    2. Impacted by blood volume
    3. End Diastolic Volume
    4. Central Venous Pressure (CVP)
      1. 2-6 mmHg
  4. Afterload
    1. Resistance against contraction
    2. Vascular constriction
    3. Pulmonary Vascular Resistance (PVR)
    4. Systemic Vascular Resistance (SVR)
      1. 800-1400 dynes/sec/cm-5
  5. Contractility
    1. Force of contraction

Assessment

  1. Preload
    1. Too Low
      1. Causes
        1. Massive Peripheral Vasodilation (Shock)
        2. Hemorrhage
        3. Dehydration
      2. Symptoms
        1. ↓ cardiac output
        2. ↓ blood pressure
        3. ↓ peripheral perfusion
    2. Too High Causes
      1. Causes
        1. Heart Failure
        2. Kidney Failure
        3. Volume Overload
      2. Symptoms
        1. Pulmonary congestion
        2. Vascular congestion
        3. ↑ blood pressure
  2. Afterload
    1. Too Low
      1. Causes
        1. Massive Peripheral Vasodilation (Shock)
        2. Hypotension
      2. Symptoms
        1. Venous pooling (redness, edema)
        2. Hypotension
    2. Too High
      1. Causes
        1. Vasoconstriction
        2. Hypertension
        3. Blood Clots
      2. Symptoms
        1. s/s blood clot- lungs, legs
        2. Hypertension
        3. Chest pain
        4. Palpitations
  3. Contractility
    1. Too Low
      1. Causes
        1. Cardiomyopathy
        2. Arrhythmias
        3. Electrolyte abnormalities
      2. Symptoms
        1. Bradycardia
        2. Hypotension
    2. Too High
      1. Causes
        1. Hypertension
        2. Electrolyte abnormalities
      2. Symptoms
        1. Myocardial ischemia
        2. Chest Pain

Therapeutic Management for Preload and Afterload

  1. Preload
    1. Too Low
      1. Treat Cause
      2. Isotonic fluids
      3. Blood Products
    2. Too High
      1. Treat Cause
      2. Diuretics
        1. Furosemide
        2. Bumetanide
      3. ACE inhibitors
        1. Captoril
        2. Lisinopril
  2. Afterload
    1. Too Low
      1. Treat Cause
      2. Vasopressors
        1. Norepinephrine
        2. Epinephrine
        3. Vasopressin
        4. Neosynephrine
    2. Too High
      1. Treat Cause
      2. Vasodilators
        1. Nitroprusside
      3. Antihypertensives
  3. Contractility
    1. Too Low
      1. Treat Cause
      2. Cardiac Glycosides
        1. Digoxin
      3. Sympathomimetics
        1. Epinephrine
    2. Too High
      1. Treat Cause
      2. Beta Blockers
        1. Metoprolol
        2. Carvedilol
      3. Calcium Channel Blockers
        1. Amlodipine
        2. Nicardipine

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

ADPIE Related Lessons

Transcript

This lesson is a follow up to the Hemodynamics lesson. If you haven’t watched it yet, we highly recommend you watch that before you watch this one! In this lesson we are going to delve deeper into the world of Preload and Afterload, as well as touch on Contractility.

If you remember from the Hemodynamics lesson, Cardiac Output = Stroke Volume x Heart Rate. And the three factors that help determine Stroke Volume are Preload, Afterload, and Contractility. So let’s zoom in on these three one at a time and then we’ll bring it back together again at the end.

Let’s start with Preload. There are a lot of ways that people use to understand preload. The best way to understand it is as stretch. It’s the amount that the heart stretches because of how much it is filled. So it’s the blood returning to the heart that impacts preload. Think Pre = before, so it’s about the volume just before it returns to the heart. During diastole, the heart is filling up with blood. It’s completely full at the end of diastole – just before the ventricles contract. So one of the ways we measure Preload is with something called End Diastolic Volume. In clinical practice, though, it requires an echocardiogram to get that measurement. Instead, we are able to use a central line inserted into the superior vena cava to measure pressures in the right atrium – remember this is where blood returns from the body. That pressure is called Central Venous Pressure, or CVP. The normal CVP for a healthy person is around 2-6 mmHg. Because preload is defined as the stretch on the muscle, it’s not exactly a volume or a pressure, but those measurements give us a good idea of how much the heart is stretching.

As we begin to understand preload better, I want you to think about a balloon. The preload is how much you blow it up. How much air are you putting into the balloon? How much is it stretching?

So…what kinds of things can cause a change in preload? Anything that decreases the return of blood to the heart. Hemorrhage…dehydration…or even massive peripheral vasodilation. If all the blood is pooling in the body, it’s not making it back to the heart, right? So how can we improve someone’s preload if it’s too low? Well we should always treat the cause. Usually that means giving fluids or blood products. But what if their preload is too high? Maybe they’re volume overloaded because of heart failure or kidney failure? In this case we can give diuretics or ACE inhibitors, or we could even give vasodilators to relieve the filling pressure on the heart.

To better understand the impact of preload, we have to understand something called Frank Starling’s law. What this law says is that the more the heart muscle stretches the stronger it will contract and therefore the higher the stroke volume. So, ultimately, more stretch, more force. What you see is that as the preload increases, so does the stroke volume. However, this effect is limited. At a certain point, this curve will begin to level off, meaning that more preload won’t actually lead to an increased Stroke Volume. Remember your balloon – the more you fill it with air, the more it stretches, the more forcefully it will push that air out when you let it go, right? BUT, at a certain point, putting more air into the balloon will no longer cause more stretch and force…what happens? The balloon pops! Now, the heart itself doesn’t pop, but it does stop responding to preload at a certain point.

So why is this important? A few reasons. First, the curve itself explains why low blood volume or dehydration can make such a difference in the patient’s cardiac output! It’s decreasing their preload and therefore their stroke volume. We also need to understand that at a certain point just giving fluids won’t be enough and we will have to address something else. Finally, it’s important to realize that everyone’s Frank-Starling Curve looks different. One person might require much more preload to get any change in their stroke volume, while another might respond really well to just a little bit of preload. Ultimately, we need to see how well the patient responds and address each patient’s needs individually.

So let’s talk about afterload. When the heart contracts during systole, it has to contract strong enough to overcome the pressure on the other side of the aortic and pulmonic valves, right? It would be like someone trying to hold your door shut – you have to push harder to get the door open! The force that the heart has to overcome is called Afterload. Think about it this way. Afterload is what the heart has to pump Against. The higher the afterload, the harder the heart has to work against it to eject the blood. In other words, it’s the resistance in the vessels that the heart has to overcome. So there are two measurements of afterload, one for the right side of the heart, called Pulmonary Vascular Resistance, or PVR, and one for the left side of the heart, called Systemic Vascular Resistance, or SVR. SVR is the most common measurement we use for Afterload. Normal SVR is 800-1400. It’s important to note that an increased SVR is closely correlated with an increase in blood pressure.

Things that cause an increased afterload are hypertension, blood clots blocking the vessels, and vasoconstriction. Remember it’s the resistance in the vessels. Decreasing afterload can help to decrease blood pressure and also decrease the workload on the heart – we can do that with vasodilators and antihypertensives – or by getting rid of any clots. Things that cause afterload to be too low would be things like massive peripheral vasodilation, or low blood pressure caused by other issues. So first we always want to treat the cause, but we can also give vasoconstrictors or vasopressors like norepinephrine, epinephrine, neosynephrine, and vasopressin. This will increase their afterload and therefore their blood pressure.

So, I’ve mentioned massive peripheral vasodilation twice now – it affects both preload and afterload and can cause major cardiac output issues – we see this the most in distributive shocks like septic and anaphylactic shock – so be sure to check out that lesson later in this course!

The final component to stroke volume is contractility. This is the strength or force of contraction. If we find that the heart is working too hard and we want to decrease the force of contraction, we would give negative inotropes – something like a beta blocker or calcium channel blocker. If we find that it isn’t beating strong enough, we would give a positive inotrope – this could be cardiac glycosides like digoxin or sympathomimetics like epinephrine.

Ultimately, though, if my preload and afterload aren’t optimal, the force of contraction or contractility won’t be enough to provide sufficient cardiac output – we have to optimize all three to get a good stroke volume.

So let’s recap – cardiac output equals heart rate times stroke volume, and there are three factors affecting Stroke Volume – Preload, Afterload, and Contractility. Preload is the stretch of the heart muscle when it fills during diastole. The more stretch, the higher the stroke volume – but only to a certain extent because of Frank Starling’s Law. Afterload is the resistance that the heart has to pump against in order to eject blood out of the ventricles during systole. Contractility is the strength or force of contraction of the heart muscles during systole. And finally don’t forget about the balloon analogy. The more you fill it, the stronger you squeeze it, and the tighter you hold the opening will all determine how much air comes out at a time. This is a great way to understand how to improve cardiac output. Does it need to be filled up? Am I not squeezing it hard enough? Or am I holding the opening too tight?

We really hope this has helped you to understand these hemodynamics and how they affect our cardiac output. As you progress through the Cardiac Course and learn more about various disease processes, you will see how these things factor into their assessment, therapeutic management and nursing care.

Now, go out and be your best self today. And, as always, happy nursing!

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Final Exam

Concepts Covered:

  • Terminology
  • Urinary System
  • Respiratory Disorders
  • Acute & Chronic Renal Disorders
  • Disorders of the Adrenal Gland
  • Oncology Disorders
  • Integumentary Disorders
  • Preoperative Nursing
  • Musculoskeletal Trauma
  • Integumentary Disorders
  • Respiratory Emergencies
  • Disorders of the Posterior Pituitary Gland
  • Hematologic Disorders
  • Renal Disorders
  • Labor Complications
  • Immunological Disorders
  • Upper GI Disorders
  • Neurological Emergencies
  • Disorders of Pancreas
  • Musculoskeletal Disorders
  • Cardiac Disorders
  • Disorders of the Thyroid & Parathyroid Glands
  • Integumentary Important Points
  • Pregnancy Risks
  • Urinary Disorders
  • Vascular Disorders
  • Central Nervous System Disorders – Brain
  • Nervous System
  • Lower GI Disorders
  • Intraoperative Nursing
  • Eating Disorders
  • Circulatory System
  • Postoperative Nursing
  • Liver & Gallbladder Disorders
  • Emergency Care of the Cardiac Patient
  • Female Reproductive Disorders
  • Shock
  • Respiratory System
  • Substance Abuse Disorders
  • Fetal Development
  • Proteins
  • Noninfectious Respiratory Disorder
  • Newborn Care
  • Statistics
  • Emergency Care of the Neurological Patient
  • Basics of Sociology
  • Bipolar Disorders
  • Infectious Respiratory Disorder

Study Plan Lessons

Diagnostic Testing Course Introduction
Fluid & Electrolytes Course Introduction
X-Ray (Xray)
X-Ray (Xray)
X-Ray (Xray)
Nursing Care and Pathophysiology of Acute Kidney (Renal) Injury (AKI)
Addisons Disease
Computed Tomography (CT)
Computed Tomography (CT)
Computed Tomography (CT)
Fluid Pressures
Informed Consent
Nursing Care and Pathophysiology for Cushings Syndrome
Fluid Shifts (Ascites) (Pleural Effusion)
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging (MRI)
Preoperative (Preop)Assessment
Pressure Ulcers/Pressure injuries (Braden scale)
CT & MR Angiography
CT & MR Angiography
Nursing Care and Pathophysiology for Diabetes Insipidus (DI)
Nursing Care and Pathophysiology for Disseminated Intravascular Coagulation (DIC)
Nursing Care and Pathophysiology of Glomerulonephritis
Isotonic Solutions (IV solutions)
Nursing Care and Pathophysiology of Osteoarthritis (OA)
Nursing Care and Pathophysiology for Pancreatitis
Preoperative (Preop) Education
Cerebral Angiography
Cerebral Angiography
Cerebral Angiography
Hypotonic Solutions (IV solutions)
Nursing Care and Pathophysiology of Osteoporosis
Nursing Care and Pathophysiology for Peptic Ulcer Disease (PUD)
Preoperative (Preop) Nursing Priorities
Thrombocytopenia
Blood Transfusions (Administration)
Cardiovascular Angiography
Cardiovascular Angiography
Cardiovascular Angiography
Fractures
Nursing Care and Pathophysiology for Hyperthyroidism
Hypertonic Solutions (IV solutions)
Integumentary (Skin) Important Points
Preload and Afterload
Nursing Care and Pathophysiology of Urinary Tract Infection (UTI)
Echocardiogram (Cardiac Echo)
Echocardiogram (Cardiac Echo)
Echocardiogram (Cardiac Echo)
Nursing Care and Pathophysiology for Hypothyroidism
Performing Cardiac (Heart) Monitoring
Ultrasound
Ultrasound
Interventional Radiology
Interventional Radiology
Nuclear Medicine
Cardiac Stress Test
Cardiac Stress Test
Pulmonary Function Test
Pulmonary Function Test
Endoscopy & EGD
Endoscopy & EGD
Colonoscopy
Colonoscopy
Mammogram
Biopsy
Biopsy
Electroencephalography (EEG)
Electroencephalography (EEG)
Electromyography (EMG)
Electromyography (EMG)
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology for Appendicitis
Nursing Care and Pathophysiology of Chronic Kidney (Renal) Disease (CKD)
Nursing Care and Pathophysiology of Diabetes Mellitus (DM)
General Anesthesia
Leukemia
Sodium-Na (Hypernatremia, Hyponatremia)
Calcium-Ca (Hypercalcemia, Hypocalcemia)
Diabetes Management
Dialysis & Other Renal Points
Local Anesthesia
Lymphoma
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Chloride-Cl (Hyperchloremia, Hypochloremia)
Nursing Care and Pathophysiology of Diabetic Ketoacidosis (DKA)
Moderate Sedation
Oncology Important Points
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Hyperglycaemic Hyperosmolar Non-ketotic syndrome (HHNS)
Nursing Care and Pathophysiology for Inflammatory Bowel Disease (IBD)
Magnesium-Mg (Hypomagnesemia, Hypermagnesemia)
Malignant Hyperthermia
Phosphorus-Phos
Nursing Care and Pathophysiology for Ulcerative Colitis(UC)
Nursing Care and Pathophysiology for Crohn’s Disease
Normal Sinus Rhythm
Post-Anesthesia Recovery
Nursing Care and Pathophysiology for Acquired Immune Deficiency Syndrome (AIDS)
Nursing Care and Pathophysiology for Cholecystitis
Nursing Care and Pathophysiology for Heart Failure (CHF)
Postoperative (Postop) Complications
Sinus Bradycardia
Nursing Care and Pathophysiology for Anaphylaxis
Nursing Care and Pathophysiology for Hepatitis (Liver Disease)
Sinus Tachycardia
Nursing Care and Pathophysiology for Cirrhosis (Liver Disease, Hepatic encephalopathy, Portal Hypertension, Esophageal Varices)
Discharge (DC) Teaching After Surgery
Pacemakers
Atrial Fibrillation (A Fib)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Nursing Care and Pathophysiology for Pelvic Inflammatory Disease (PID)
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology for Endometriosis
Nursing Care and Pathophysiology for Menopause
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Distributive Shock
ABG (Arterial Blood Gas) Interpretation-The Basics
ABG (Arterial Blood Gas) Oxygenation
ABG Course (Arterial Blood Gas) Introduction
ABGs Nursing Normal Lab Values
ABGs Tic-Tac-Toe interpretation Method
Absolute Neutrophil Count (ANC) Lab Values
Absolute Reticulocyte Count (ARC) Lab Values
Alanine Aminotransferase (ALT) Lab Values
Albumin Lab Values
Alkaline Phosphatase (ALK PHOS) Lab Values
Alpha-fetoprotein (AFP) Lab Values
Ammonia (NH3) Lab Values
Anion Gap
Antinuclear Antibody Lab Values
Base Excess & Deficit
Beta Hydroxy (BHB) Lab Values
Bicarbonate (HCO3) Lab Values
Blood Urea Nitrogen (BUN) Lab Values
Brain Natriuretic Peptide (BNP) Lab Values
C-Reactive Protein (CRP) Lab Values
Carbon Dioxide (Co2) Lab Values
Carboxyhemoglobin Lab Values
Cardiac (Heart) Enzymes
Cholesterol (Chol) Lab Values
Coagulation Studies (PT, PTT, INR)
Congestive Heart Failure (CHF) Labs
COPD (Chronic Obstructive Pulmonary Disease) Labs
Cortisol Lab Vales
Creatine Phosphokinase (CPK) Lab Values
Creatinine (Cr) Lab Values
Creatinine Clearance Lab Values
Cultures
Cyclic Citrullinated Peptide (CCP) Lab Values
D-Dimer (DDI) Lab Values
Direct Bilirubin (Conjugated) Lab Values
Dysrhythmias Labs
Erythrocyte Sedimentation Rate (ESR) Lab Values
Fibrin Degradation Products (FDP) Lab Values
Fibrinogen Lab Values
Fluid Compartments
Free T4 (Thyroxine) Lab Values
Gamma Glutamyl Transferase (GGT) Lab Values
Glomerular Filtration Rate (GFR)
Glucagon Lab Values
Glucose Lab Values
Glucose Tolerance Test (GTT) Lab Values
Growth Hormone (GH) Lab Values
Hematocrit (Hct) Lab Values
Hemodynamics
Hemoglobin (Hbg) Lab Values
Hemoglobin A1c (HbA1C)
Hepatitis B Virus (HBV) Lab Values
Homocysteine (HCY) Lab Values
Ionized Calcium Lab Values
Iron (Fe) Lab Values
Ischemic (CVA) Stroke Labs
Lab Panels
Lab Values Course Introduction
Lactate Dehydrogenase (LDH) Lab Values
Lactic Acid
Lipase Lab Values
Lithium Lab Values
Liver Function Tests
Mean Corpuscular Volume (MCV) Lab Values
Mean Platelet Volume (MPV) Lab Values
Metabolic Acidosis (interpretation and nursing diagnosis)
Metabolic Alkalosis
Methemoglobin (MHGB) Lab Values
Myoglobin (MB) Lab Values
Order of Lab Draws
Pediatric Bronchiolitis Labs
Phosphorus (PO4) Blood Test Lab Values
Platelets (PLT) Lab Values
Pneumonia Labs
Potassium-K (Hyperkalemia, Hypokalemia)
Prealbumin (PAB) Lab Values
Pregnancy Labs
Procalcitonin (PCT) Lab Values
Prostate Specific Antigen (PSA) Lab Values
Protein (PROT) Lab Values
Protein in Urine Lab Values
Red Blood Cell (RBC) Lab Values
Red Cell Distribution Width (RDW) Lab Values
Renal (Kidney) Failure Labs
Respiratory Acidosis (interpretation and nursing interventions)
Respiratory Alkalosis
ROME – ABG (Arterial Blood Gas) Interpretation
Sepsis Labs
Shorthand Lab Values
Nursing Care and Pathophysiology for SIADH (Syndrome of Inappropriate antidiuretic Hormone Secretion)
Thyroid Stimulating Hormone (TSH) Lab Values
Thyroxine (T4) Lab Values
Total Bilirubin (T. Billi) Lab Values
Total Iron Binding Capacity (TIBC) Lab Values
Triiodothyronine (T3) Lab Values
Troponin I (cTNL) Lab Values
Urinalysis (UA)
Urine Culture and Sensitivity Lab Values
Vitamin B12 Lab Values
Vitamin D Lab Values
White Blood Cell (WBC) Lab Values