Fluid Compartments

You're watching a preview. 300,000+ students are watching the full lesson.
Brad Bass
ASN,RN
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For Fluid Compartments

Electrolytes – Location in Body (Mnemonic)
Fluid and Electrolytes (Cheatsheet)
Osmotic Pressure (Image)
Cell Membrane and Fluid Spaces (Image)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Overview

  1. Main Compartments
    1. Intracellular
    2. Extracellular
      1. Intravascular
      2. Interstitial

Nursing Points

 

General

  1. Intracellular Fluid (ICF)
    1. Inside the cells
    2. 70% of body water
    3. Primary cation = Potassium (K+)
  2. Extracellular Fluid (ECF)
    1. Outside the cells
    2. 30% of body water
    3. Primary cation = Sodium (Na+)
    4. Intravascular
      1. Inside the blood vessels
      2. 20% of ECF
      3. Primarily blood plasma
    5. Interstitial
      1. In the tissues, outside blood vessels
      2. 80% of ECF
  3. Fluid Definitions
    1. Solution
      1. A substance containing both a liquid (solvent) and particles (solutes)
    2. Solvent
      1. Liquid in which particles are dissolved or carried
    3. Solutes
      1. Particles which are dissolved in a solution
    4. Example:
      1. Solution = Salt Water
      2. Solvent = Water
      3. Solute = Sodium Chloride
  4. Semipermeable Membrane
    1. All fluid spaces are separated by some sort of  semipermeable membrane
      1. Cell membrane
      2. Vessel wall
      3. Tissue membranes
      4. Organ walls
    2. Only certain small particles and water can pass through
    3. Other particles or substances require facilitated diffusion
  5. Modes of Transport
    1. Diffusion
      1. Movement of particles through a semipermeable membrane from an area of high concentration to an area of low concentration
    2. Facilitated Diffusion
      1. Movement of particles using a transport channel/protein or carrier molecule
    3. Osmosis
      1. Diffusion of water through a semipermeable membrane from an area of low concentration of solutes to high concentration of solutes

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Transcript

Hey guys, my name is Brad and welcome to nursing.com. And in today’s video, we’re going to discuss our fluid compartments. I really want to discuss the various types of compartments where fluid can reside within our body, as well as how fluid moves interchangeably between these various compartments. Let’s dive in. 

So whenever we’re talking about fluid compartments, we are pretty much looking at three primary fluid compartments, and I’m gonna break these down a little bit. The first one that we’re looking at is our intracellular compartment. The second is going to be our intravascular compartment (excuse that spelling). And the third is our interstitial compartment. Let’s actually bring a little bit of clarity and make this make sense. 

So what we have here is a hand and we’ve got an arm and inside of this arm, just like yours and my arm, we have blood vessels. And within that blood vessel, we have all of these little red blood cells. This is the way that we’re going to conceptualize these three different compartments, right? Our intracellular compartment is actually the fluid inside of the cell. Okay. That’s our first fluid compartment, our intracellular compartment, it’s the fluid inside of the cell. And it’s important to know that our primary cation inside of the cells is potassium with a normal reference range of 3.5 to 5.1. 

Our intravascular compartment is actually all of the other fluid within that vessel that is not inside of cells, right? All of the plasma, the plasma proteins like albumin, all of the additional fluid inside of these vessels is our intravascular compartment. And it’s important to know that our normal, our primary cation inside of the intravascular compartment is sodium. And that our normal reference range for sodium is 135 to 145. 

And finally, our interstitial compartment is our tissue compartment. The actual tissues in that arm contain fluids as well. And the way that I like to think about these three, these three,  compartments is like a scale, right? There is a perfect homeostatic balance and movement of fluid interchangeably in between the intracellular intravascular and interstitial compartment that maintains a nice balanced fluid volume across these various compartments. And the way in which this fluid moves is something that you probably learned a long time ago called osmosis. 

So regarding osmosis and the movement of fluid you’ll recall that we have a semipermeable membrane. It’s a semipermeable cellular membrane, right? Let’s say this is our little red blood cell. And this right here is actually a little cross section of the actual cellular membrane, the lining of that cell itself. Okay. Now, we’re going to remember regarding the semipermeable membranes that they allow the passage of specific molecules, as well as electrolytes and water to pass freely across this semipermeable membrane. 

Now regarding the movement of fluid interchangeably between these various compartments, that we’ve just mentioned. We’re going to want to remember, right, the way that osmosis works, it is the movement of water from areas of low concentration of solutes across that semipermeable membrane toward areas of higher concentration of solutes. Remember solutes are little small particles, molecules, such as that potassium, such as that sodium, right? Let’s consider it something like that solvent is the actual fluid in which that those solutes are dissolved in. We’re going to consider that to be plasma. And a solution is the actual combination of the solutes and solvents together, pretty much producing blood. That’s the way I like to break down, solutes and solvent, eventually producing a solution. 

Now the best way that I like to think about conceptualizing this is dehydrated compartments, right? If you can think about a dehydrated compartment, it’s better. It’s an easier way to understand why fluid moves osmotically from areas of low solute concentration, to areas of high solute concentration. Think about a glass of water, right? You’ve got a nice little glass of water and you have poured a lot of salt into that water. I just might be an artist. Okay? So you pour a bunch of salt down into that water. And now this water is heavily concentrated in salt. Now, what happens if you were to boil that water, that glass of water, the water’s going to eventually go away. It’s going to end up leaving a little bit of water but, incredibly high and heavily concentrated amount of salt will be left behind residing in the bottom of that water. Think about if you were out in the sun at the beach, you know, sunbathing, and you were out there for several hours, you’re going to dehydrate your body. You’re going to become incredibly thirsty because what remains is a heavy amount of concentration of solutes. You’re going to want to be consuming water, to try and relieve this thirst. The reason being is you have a much more higher concentration of solutes then you do a fluid and that’s going to cause fluid to move osmotically from areas of lower concentration, to areas of higher concentration. 

But now that we’ve discussed what things look like in a homeostatic environment, whenever we’re maintaining that fine fluid balance between these three compartments, what I’d like to discuss now are what happens whenever pathology ensues. Whenever we actually have a disruption in that fine fluid balance, we actually have something that occurs called third spacing. Now, essentially what third spacing is, right, the way that I think about third spacing is what we have is we have too high of osmotic pressure. Okay. What this basically means is we have too great of a pressure within our intravascular compartment. Now we know we’ve got our cells in here and there’s the intracellular compartment as well, but there is too much pressure within this vessel. And this pressure actually pushes on the walls of the vessel and this causes fluid to seep out of the vessel and into that interstitial space. Like we see over here, this occurs in situations such as patients experiencing heart failure, their intravascularly volume overloaded causing an increased intravascular pressure, forcing fluid against that vessel wall to cross that vessel wall and to seep into the interstitial tissues. We may see this such as edema right. We see this all the time in patients who experienced CHF. 

So what are some of the therapeutic managements that we may see given surrounding this concept of fluid compartments? Right? We could see fluid based therapeutic management, not just hypotonic fluids or hypertonic fluid recalling that hypotonic means less concentrated, right? It is a less concentrated IV fluid. We could see this given to patients in situations where they are cellularly dehydrated. If we give a less concentrated fluid intravascularly, this is going to cause the fluid to want to move from the area of low solute concentration inside the vessel to areas of high solute concentration inside the cell. Hypertonic solutions could also be given, for instances, where third spacing has occurred. So let’s remember hypertonic are more concentrated fluids, right? So if we give a heavily concentrated fluid, a fluid heavily concentrated in solute such as the 3% sodium. If we give that intravascularly, it’s going to produce a much higher concentration of solutes in that vessel, which is going to promote the movement of fluid from that interstitial space back inside the vessel. And albumin is a plasma protein. This is something that we actually give all the time in the CV ICU, where I work. Same kind of concept, it is a large plasma protein that is administered intravascularly that increases the solute concentration inside that vessel causing fluid to move from the interstitial space back inside the vessel. And then we can also see electrolyte based therapies as well. We’ve spoken about how osmosis moves from areas of low solute concentration to areas of high solute concentration. It’s also important to know that electrolytes also can move across that semipermeable membrane and that electrolytes move from areas of high concentration, to areas of low concentration, a little bit different than osmosis, quite the opposite, actually. So you can think of a patient who has low blood potassium levels or low sodium levels. Well, we can correct this by administering the proper electrolytes. If a patient has low potassium, we can give them potassium containing fluids. And as this potassium containing fluid goes into the vessel, right, we’re going to remember potassium is primarily an intracellular cation. So as we administer this potassium containing IV fluid into the vessel, it’s going to cause this electrolyte diffusion from this area of high concentration inside the vessel back inside the cell. This is a way in which we’re able to therapeutically treat patients from a fluid perspective, as well as from an electrolyte perspective. 

So summarizing some of the key points surrounding fluid compartments let’s remember that fluid compartments are responsible for maintaining that fine homeostatic fluid balance interchangeably between the various compartments. Make sure you familiarize yourself with the three compartments, right: intracellular, intravascular, and interstitial.  Understanding that the fine fluid balance is maintained through the osmotic movement of fluid across semipermeable membranes from areas of low solute concentration, to areas of high solute concentration. And also understanding, what can occur whenever pathophysiologies ensue and that fine fluid balance is disturbed. Basically a high intravascular pressure, osmotic pressure pushes against those vessels, forcing fluid to seep out of those vessels and into those interstitial tissues, as well as those body cavities. And also make sure that you familiarize yourself again with the therapeutic managements that we just discussed. 

Guys, I hope that this video really helped bring further clarity to the concept of fluid compartments and how not only fluid moves via osmosis, but also how electrolytes move via diffusion. I hope that you guys have a great day, make sure that you go out there and be your best selves today. And as always, happy nursing.

 

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Final Exam

Concepts Covered:

  • Terminology
  • Urinary System
  • Respiratory Disorders
  • Acute & Chronic Renal Disorders
  • Disorders of the Adrenal Gland
  • Oncology Disorders
  • Integumentary Disorders
  • Preoperative Nursing
  • Musculoskeletal Trauma
  • Integumentary Disorders
  • Respiratory Emergencies
  • Disorders of the Posterior Pituitary Gland
  • Hematologic Disorders
  • Renal Disorders
  • Labor Complications
  • Immunological Disorders
  • Upper GI Disorders
  • Neurological Emergencies
  • Disorders of Pancreas
  • Musculoskeletal Disorders
  • Cardiac Disorders
  • Disorders of the Thyroid & Parathyroid Glands
  • Integumentary Important Points
  • Pregnancy Risks
  • Urinary Disorders
  • Vascular Disorders
  • Central Nervous System Disorders – Brain
  • Nervous System
  • Lower GI Disorders
  • Intraoperative Nursing
  • Eating Disorders
  • Circulatory System
  • Postoperative Nursing
  • Liver & Gallbladder Disorders
  • Emergency Care of the Cardiac Patient
  • Female Reproductive Disorders
  • Shock
  • Respiratory System
  • Substance Abuse Disorders
  • Fetal Development
  • Proteins
  • Noninfectious Respiratory Disorder
  • Newborn Care
  • Statistics
  • Emergency Care of the Neurological Patient
  • Basics of Sociology
  • Bipolar Disorders
  • Infectious Respiratory Disorder

Study Plan Lessons

Diagnostic Testing Course Introduction
Fluid & Electrolytes Course Introduction
X-Ray (Xray)
X-Ray (Xray)
X-Ray (Xray)
Nursing Care and Pathophysiology of Acute Kidney (Renal) Injury (AKI)
Addisons Disease
Computed Tomography (CT)
Computed Tomography (CT)
Computed Tomography (CT)
Fluid Pressures
Informed Consent
Nursing Care and Pathophysiology for Cushings Syndrome
Fluid Shifts (Ascites) (Pleural Effusion)
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging (MRI)
Magnetic Resonance Imaging (MRI)
Preoperative (Preop)Assessment
Pressure Ulcers/Pressure injuries (Braden scale)
CT & MR Angiography
CT & MR Angiography
Nursing Care and Pathophysiology for Diabetes Insipidus (DI)
Nursing Care and Pathophysiology for Disseminated Intravascular Coagulation (DIC)
Nursing Care and Pathophysiology of Glomerulonephritis
Isotonic Solutions (IV solutions)
Nursing Care and Pathophysiology of Osteoarthritis (OA)
Nursing Care and Pathophysiology for Pancreatitis
Preoperative (Preop) Education
Cerebral Angiography
Cerebral Angiography
Cerebral Angiography
Hypotonic Solutions (IV solutions)
Nursing Care and Pathophysiology of Osteoporosis
Nursing Care and Pathophysiology for Peptic Ulcer Disease (PUD)
Preoperative (Preop) Nursing Priorities
Thrombocytopenia
Blood Transfusions (Administration)
Cardiovascular Angiography
Cardiovascular Angiography
Cardiovascular Angiography
Fractures
Nursing Care and Pathophysiology for Hyperthyroidism
Hypertonic Solutions (IV solutions)
Integumentary (Skin) Important Points
Preload and Afterload
Nursing Care and Pathophysiology of Urinary Tract Infection (UTI)
Echocardiogram (Cardiac Echo)
Echocardiogram (Cardiac Echo)
Echocardiogram (Cardiac Echo)
Nursing Care and Pathophysiology for Hypothyroidism
Performing Cardiac (Heart) Monitoring
Ultrasound
Ultrasound
Interventional Radiology
Interventional Radiology
Nuclear Medicine
Cardiac Stress Test
Cardiac Stress Test
Pulmonary Function Test
Pulmonary Function Test
Endoscopy & EGD
Endoscopy & EGD
Colonoscopy
Colonoscopy
Mammogram
Biopsy
Biopsy
Electroencephalography (EEG)
Electroencephalography (EEG)
Electromyography (EMG)
Electromyography (EMG)
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology for Appendicitis
Nursing Care and Pathophysiology of Chronic Kidney (Renal) Disease (CKD)
Nursing Care and Pathophysiology of Diabetes Mellitus (DM)
General Anesthesia
Leukemia
Sodium-Na (Hypernatremia, Hyponatremia)
Calcium-Ca (Hypercalcemia, Hypocalcemia)
Diabetes Management
Dialysis & Other Renal Points
Local Anesthesia
Lymphoma
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Chloride-Cl (Hyperchloremia, Hypochloremia)
Nursing Care and Pathophysiology of Diabetic Ketoacidosis (DKA)
Moderate Sedation
Oncology Important Points
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Hyperglycaemic Hyperosmolar Non-ketotic syndrome (HHNS)
Nursing Care and Pathophysiology for Inflammatory Bowel Disease (IBD)
Magnesium-Mg (Hypomagnesemia, Hypermagnesemia)
Malignant Hyperthermia
Phosphorus-Phos
Nursing Care and Pathophysiology for Ulcerative Colitis(UC)
Nursing Care and Pathophysiology for Crohn’s Disease
Normal Sinus Rhythm
Post-Anesthesia Recovery
Nursing Care and Pathophysiology for Acquired Immune Deficiency Syndrome (AIDS)
Nursing Care and Pathophysiology for Cholecystitis
Nursing Care and Pathophysiology for Heart Failure (CHF)
Postoperative (Postop) Complications
Sinus Bradycardia
Nursing Care and Pathophysiology for Anaphylaxis
Nursing Care and Pathophysiology for Hepatitis (Liver Disease)
Sinus Tachycardia
Nursing Care and Pathophysiology for Cirrhosis (Liver Disease, Hepatic encephalopathy, Portal Hypertension, Esophageal Varices)
Discharge (DC) Teaching After Surgery
Pacemakers
Atrial Fibrillation (A Fib)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Nursing Care and Pathophysiology for Pelvic Inflammatory Disease (PID)
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology for Endometriosis
Nursing Care and Pathophysiology for Menopause
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Distributive Shock
ABG (Arterial Blood Gas) Interpretation-The Basics
ABG (Arterial Blood Gas) Oxygenation
ABG Course (Arterial Blood Gas) Introduction
ABGs Nursing Normal Lab Values
ABGs Tic-Tac-Toe interpretation Method
Absolute Neutrophil Count (ANC) Lab Values
Absolute Reticulocyte Count (ARC) Lab Values
Alanine Aminotransferase (ALT) Lab Values
Albumin Lab Values
Alkaline Phosphatase (ALK PHOS) Lab Values
Alpha-fetoprotein (AFP) Lab Values
Ammonia (NH3) Lab Values
Anion Gap
Antinuclear Antibody Lab Values
Base Excess & Deficit
Beta Hydroxy (BHB) Lab Values
Bicarbonate (HCO3) Lab Values
Blood Urea Nitrogen (BUN) Lab Values
Brain Natriuretic Peptide (BNP) Lab Values
C-Reactive Protein (CRP) Lab Values
Carbon Dioxide (Co2) Lab Values
Carboxyhemoglobin Lab Values
Cardiac (Heart) Enzymes
Cholesterol (Chol) Lab Values
Coagulation Studies (PT, PTT, INR)
Congestive Heart Failure (CHF) Labs
COPD (Chronic Obstructive Pulmonary Disease) Labs
Cortisol Lab Vales
Creatine Phosphokinase (CPK) Lab Values
Creatinine (Cr) Lab Values
Creatinine Clearance Lab Values
Cultures
Cyclic Citrullinated Peptide (CCP) Lab Values
D-Dimer (DDI) Lab Values
Direct Bilirubin (Conjugated) Lab Values
Dysrhythmias Labs
Erythrocyte Sedimentation Rate (ESR) Lab Values
Fibrin Degradation Products (FDP) Lab Values
Fibrinogen Lab Values
Fluid Compartments
Free T4 (Thyroxine) Lab Values
Gamma Glutamyl Transferase (GGT) Lab Values
Glomerular Filtration Rate (GFR)
Glucagon Lab Values
Glucose Lab Values
Glucose Tolerance Test (GTT) Lab Values
Growth Hormone (GH) Lab Values
Hematocrit (Hct) Lab Values
Hemodynamics
Hemoglobin (Hbg) Lab Values
Hemoglobin A1c (HbA1C)
Hepatitis B Virus (HBV) Lab Values
Homocysteine (HCY) Lab Values
Ionized Calcium Lab Values
Iron (Fe) Lab Values
Ischemic (CVA) Stroke Labs
Lab Panels
Lab Values Course Introduction
Lactate Dehydrogenase (LDH) Lab Values
Lactic Acid
Lipase Lab Values
Lithium Lab Values
Liver Function Tests
Mean Corpuscular Volume (MCV) Lab Values
Mean Platelet Volume (MPV) Lab Values
Metabolic Acidosis (interpretation and nursing diagnosis)
Metabolic Alkalosis
Methemoglobin (MHGB) Lab Values
Myoglobin (MB) Lab Values
Order of Lab Draws
Pediatric Bronchiolitis Labs
Phosphorus (PO4) Blood Test Lab Values
Platelets (PLT) Lab Values
Pneumonia Labs
Potassium-K (Hyperkalemia, Hypokalemia)
Prealbumin (PAB) Lab Values
Pregnancy Labs
Procalcitonin (PCT) Lab Values
Prostate Specific Antigen (PSA) Lab Values
Protein (PROT) Lab Values
Protein in Urine Lab Values
Red Blood Cell (RBC) Lab Values
Red Cell Distribution Width (RDW) Lab Values
Renal (Kidney) Failure Labs
Respiratory Acidosis (interpretation and nursing interventions)
Respiratory Alkalosis
ROME – ABG (Arterial Blood Gas) Interpretation
Sepsis Labs
Shorthand Lab Values
Nursing Care and Pathophysiology for SIADH (Syndrome of Inappropriate antidiuretic Hormone Secretion)
Thyroid Stimulating Hormone (TSH) Lab Values
Thyroxine (T4) Lab Values
Total Bilirubin (T. Billi) Lab Values
Total Iron Binding Capacity (TIBC) Lab Values
Triiodothyronine (T3) Lab Values
Troponin I (cTNL) Lab Values
Urinalysis (UA)
Urine Culture and Sensitivity Lab Values
Vitamin B12 Lab Values
Vitamin D Lab Values
White Blood Cell (WBC) Lab Values