Sinus Bradycardia

You're watching a preview. 300,000+ students are watching the full lesson.
Brad Bass
ASN,RN
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For Sinus Bradycardia

Sinus Bradycardia (Image)
EKG Chart (Cheatsheet)
EKG Electrical Activity Worksheet (Cheatsheet)
10 Common EKG Heart Rhythms (Cheatsheet)
Heart Rhythm Identification (Cheatsheet)
Heart Rhythms Signs and Symptoms (Cheatsheet)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Overview of Sinus Bradycardia

  1. Characteristics of sinus bradycardia
    1. SA node  initiates electrical conduction
      1. Same as normal sinus rhythm but HR <60
    2. Rhythm
      1. Regular
    3. Heart rate
      1. <60
    4. P:QRS ratio
      1. 1:1
    5. PR Interval
      1. 0.12-.20 seconds
    6. QRS complex
      1. 0.06-0.12 seconds

Nursing Points for Sinus Bradycardia

General

  1. Patient Presentation
    1. Asymptomatic
    2. Symptomatic
      1. Syncope
        1. Lightheaded
        2. Vertigo
      2. Decreased cardiac output
        1. Fatigue
        2. Short of breath
        3. Chest pain
        4. Hypotensive
  2. Causes
    1. Medications
      1. Digoxin Toxicity
      2. Beta Blockers
      3. Calcium Channel Blockers
    2. Athletes
    3. Vagus nerve stimulation
    4. SA node malfunction
    5. Hyperkalemia
  3. Nursing Interventions
    1. Determine if  symptomatic or asymptomatic
    2. Determine the cause of bradycardia

Assessment of Sinus Bradycardia

  1. Apical heart rate
    1. Stable
    2. Unstable
  2. Vertigo/syncope
  3. Hypotension
  4. Chest pain/SOB
  5. Electrolytes

Therapeutic Management for Sinus Bradycardia

  1. Find and treat the cause
  2. Asymptomatic
    1. Continue to monitor
  3. Symptomatic
    1. Atropine
      1. Follow ACLS Guidelines
    2. Pacemaker
      1. Temporary
        1. Transcutaneous
        2. Transvenous
      2. Permanent

Nursing Concepts

  1. EKG Rhythms
  2. Perfusion

Patient Education

  1. Check and count own radial pulse
    1. Report if abnormally low
  2. If hypotensive and dizzy
    1. Prevent falls
      1. Lay down and elevate feet

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Transcript

 

Hey guys, my name is Brad, and welcome to nursing.com. And in today’s video, what we’re going to be doing is we’re going to discuss sinus bradycardia. I’d like to discuss the physiology behind sinus bradycardia, as well as some signs and symptoms that you may see in a patient, how we may treat a patient with bradycardia, as well as how to identify this on an EKG strip? Let’s dive in. 

So whenever we’re taking a look at sinus bradycardia, sinus bradycardia is simply normal sinus rhythm, but with a slower heart rate. And typically what we’re looking at is a heart rate, less than 60 beats per minute. This is how we define bradycardia. Now it’s important to know that sinus bradycardia, just like normal sinus rhythm, is indeed a sinus rhythm because the impulse, the electrical impulse, actually begins in that SA node, in that sinoatrial node. So, therefore, we have a sinus rhythm, but again, the main differentiator between normal sinus rhythm and sinus bradycardia is that we have this slower heart rate. 

Now, what are some of the common causes of bradycardia? So some of the common causes of bradycardia include hypoglycemia. Hypoglycemia is actually associated with hypokalemia right, lower blood potassium levels, which results in bradycardia. Hypothyroidism is also something that can cause bradycardia, as well as hypothermia. I’d like for you to imagine that you are climbing Mount Everest and you are in an extremely cold environment. As you’re moving through an extremely cold environment, you’re going to slow down physically. Everything is going to slow down. Your metabolism is going to slow down, all of the cellular processes of your body, everything is going to slow down in an attempt to conserve energy. And as a result, one of the other things that will drop is heart rate. 

So what are some of the common assessment findings that we may see in patients experiencing bradycardia? Well, it’s important to remember that cardiac output equals stroke volume times heart rate (CO = SV X HR). Now, if that sounds a little bit fuzzy to you, make sure you check out our course on hemodynamics to bring further clarity. But, what we have here in a patient with bradycardia is we have a decreased heart rate, right? Again, remember less than 60 beats per minute. And if our heart rate is decreased, then it stands to reason, that’s going to decrease our cardiac output. If your cardiac output is decreased, the amount of blood that your left ventricle can eject per minute, then it stands to reason that’s going to cause a drop in your blood pressure. So what you’re going to see as a result, all of this, as a result of decreased heart rate, you’re going to see a drop in your blood pressure, dizziness, syncope, shortness of breath, cool and clammy skin, all a result of the bradycardia that the patient is experiencing. 

So what are some of the therapeutic managements that we may see for a patient experiencing bradycardia? Well, we could see a pharmacological option, something such as atropine, which is essentially a positive chronotrope. You may hear that terminology thrown around, but positive chronotrope basically just means it increases their heart rate. So if a patient’s bradycardic, you may see something like that you use.  You could also see something like transcutaneous pacing, which is essentially where you take a patient and you hook them up to the pads, right? The defibrillator pads that we would normally use during codes connected to the defibrillator, but instead of shocking the patient to try and correct an electrical abnormality in a code situation, for instance, instead, we’re actually going to use the defibrillator machine to pace them. We would set the defibrillator machine to a particular heart rate, something greater than 60 beats per minute, and this would actually deliver mechanical shock to the patient to mechanically increase their heart rate. Again, the overall idea of these treatment modalities is we need to increase the heart rate and, as usual with everything, is patient dependent. 

And so now we get to the point where we need to try and learn how to identify sinus bradycardia on a rhythm exam. Again, I highly encourage you, go check out how to solve a basic EKG strip here on nursing.com. If you’re not familiar with what these different types of waves are, as well as what a normal PR interval length or a normal QRS length is, for instance. 

So what are we going to see when we use the six step method to solve for sinus bradycardia? Well, we know that what we’re going to be looking at a heart rate, less than 60 beats per minute. Regularity, that R to R regularity. We will indeed see a normal R to R interval. One P for every QRS complex. Again, yes, we will see that. This is essentially normal sinus rhythm, but with a slower heart rate. Let’s remember, that’s what sinus bradycardia is. PR interval length, we will recall that the normal is 0.12 to 0.20 seconds. And that is indeed what we will see with sinus bradycardia. And then a normal QRS length is 0.06 to 0.12 seconds. And this is also what we will see in sinus bradycardia. Now let’s actually take a look at a practice, a practice exam question, and go from there. 

And so looking at sinus bradycardia, or should I say looking at an actual little strip here again, we’re going to implement this six step method to solve. Knowing that that six step is to solve. And the first thing that we’re going to do is we’re going to look at a heart rate, remembering that this here is a six second strip. So all we do is take our number of QRS complexes and multiply by 10. In this instance, we have 1, 2, 3, 4, 5 QRS complexes, times 10 equals a heart rate of 50 beats per minute (5 X 10 = 50). If we were going through an exam question that we had this, and this is the first thing on our six step method, and we see a heart rate less than 60 beats per minute, that should be queuing you off. Maybe what we’re dealing with is some kind of bradycardia. 

The second step is looking at the R to R interval. Again, you’re actually measuring the distance between each individual R wave looking to make sure that the distance is the same. And in sinus bradycardia, indeed it is.

 P to QRS ratio. Do we have one P wave for every QRS complex, P QRS, P QRS, P QRS all the way down. And indeed we do have one P wave for every QRS complex. 

Now that PR interval that we’re taking a look at, let’s go down here and we’ll take a look at this one, right? Let’s measure the number of little squares. We have 1, 2, 3, 4. Four squares of our PR interval. Remember one little individual square here is 0.04 seconds. And one larger square is 0.20 seconds. So we have 1, 2, 3, 4 little squares. 0.04 times four is going to equal 0.16 seconds (0.04 X 4 = 0.16), which is normal between 0.12 and 0.20. 

And then we’re gonna take a look at our QRS complex length in this example. We have, we’re going to count little squares. 1. 2.  Let’s try this one. 1, 2.  So 0.04 times two is 0.08 (0.04 X 2 = 0.08), which again is between 0.06 and 0.12. So we have a normal QRS complex length and using this information that we have, this six step method, while looking at the strip that we have, we know, without a doubt, that what we’re dealing with is sinus bradycardia. 

And so to summarize some of our key points surrounding sinus bradycardia, remember sinus bradycardia is essentially normal sinus rhythm, but with a slower heart rate, specifically a heart rate, less than 60 beats per minute. Recalling also, it’s a sinus rhythm because it originates in that sinoatrial node. This is going to be regular with a normal R to R interval, as well as being consistent with one P wave for every QRS complex. Our PR interval length in sinus bradycardia will indeed be normal 0.12 to 0.20 seconds. And our QRS complex lengths will also be normal in sinus bradycardia. 

Guys, I hope this video really helped you understand sinus bradycardia well. A lot of the things that we would see in the patient as well as treatment options, as well as how to identify it on an exam, as far as an EKG goes. Guys, go out there and be your best selves today. And as always, happy nursing.

 

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Black Friday

Sale

nursing.com black friday sale. up to 80% off a nursing school and ncelx prep must haves

Wow, up to 80% off . . .
We gasped, too! Now, go get ’em.

NP 4 Exam 2

Concepts Covered:

  • Circulatory System
  • Urinary System
  • Adult
  • Basic
  • Test Taking Strategies
  • Prefixes
  • Suffixes
  • Integumentary Disorders
  • Respiratory Disorders
  • Pediatric
  • Bipolar Disorders
  • Immunological Disorders
  • Labor Complications
  • Neonatal
  • Medication Administration
  • Disorders of Pancreas
  • Pregnancy Risks
  • Cardiac Disorders
  • Learning Pharmacology
  • Eating Disorders
  • Dosage Calculations
  • Emergency Care of the Cardiac Patient
  • Substance Abuse Disorders
  • Vascular Disorders
  • Endocrine and Metabolic Disorders
  • Shock
  • Fetal Development
  • Depressive Disorders
  • Anxiety Disorders
  • Cardiovascular Disorders
  • Liver & Gallbladder Disorders
  • Upper GI Disorders
  • Female Reproductive Disorders
  • Neurologic and Cognitive Disorders
  • Personality Disorders
  • Nervous System
  • Urinary Disorders
  • Hematologic Disorders
  • Disorders of the Posterior Pituitary Gland
  • Respiratory System
  • Renal Disorders
  • Noninfectious Respiratory Disorder
  • Shock

Study Plan Lessons

EKG (ECG) Course Introduction
Fluid & Electrolytes Course Introduction
Life Support Review Course Introduction
12 Points to Answering Pharmacology Questions
CPR-BLS (Basic Life Support)
Electrical A&P of the Heart
54 Common Medication Prefixes and Suffixes
Advanced Cardiovascular Life Support (ACLS)
Electrolytes Involved in Cardiac (Heart) Conduction
Fluid Pressures
Vitals (VS) and Assessment
Fluid Shifts (Ascites) (Pleural Effusion)
Pediatric Advanced Life Support (PALS)
Therapeutic Drug Levels (Digoxin, Lithium, Theophylline, Phenytoin)
Essential NCLEX Meds by Class
Isotonic Solutions (IV solutions)
Neonatal Resuscitation Program (NRP)
6 Rights of Medication Administration
Hypotonic Solutions (IV solutions)
Hypertonic Solutions (IV solutions)
Preload and Afterload
Performing Cardiac (Heart) Monitoring
The SOCK Method – Overview
The SOCK Method – S
The SOCK Method – O
The SOCK Method – C
The SOCK Method – K
Basics of Calculations
The EKG (ECG) Graph
Nursing Care and Pathophysiology of Angina
Dimensional Analysis Nursing (Dosage Calculations/Med Math)
EKG (ECG) Waveforms
Sodium-Na (Hypernatremia, Hyponatremia)
Calcium-Ca (Hypercalcemia, Hypocalcemia)
Calculating Heart Rate
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Oral Medications
Chloride-Cl (Hyperchloremia, Hypochloremia)
Injectable Medications
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
IV Infusions (Solutions)
Magnesium-Mg (Hypomagnesemia, Hypermagnesemia)
Complex Calculations (Dosage Calculations/Med Math)
Phosphorus-Phos
Normal Sinus Rhythm
Normal Sinus Rhythm
Nursing Care and Pathophysiology for Heart Failure (CHF)
Sinus Bradycardia
Sinus Bradycardia
Sinus Tachycardia
Sinus Tachycardia
Atrial Flutter
Pacemakers
Atrial Fibrillation (A Fib)
Atrial Fibrillation (A Fib)
Premature Atrial Contraction (PAC)
Supraventricular Tachycardia (SVT)
Premature Ventricular Contraction (PVC)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Ventricular Fibrillation (V Fib)
1st Degree AV Heart Block
2nd Degree AV Heart Block Type 1 (Mobitz I, Wenckebach)
2nd Degree AV Heart Block Type 2 (Mobitz II)
3rd Degree AV Heart Block (Complete Heart Block)
Benzodiazepines
Nursing Care and Pathophysiology of Hypertension (HTN)
Cardiac (Heart) Disease in Pregnancy
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Dehydration
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Distributive Shock
Fetal Circulation
MAOIs
SSRIs
TCAs
Congenital Heart Defects (CHD)
Defects of Increased Pulmonary Blood Flow
Defects of Decreased Pulmonary Blood Flow
Insulin
Obstructive Heart (Cardiac) Defects
Mixed (Cardiac) Heart Defects
Histamine 1 Receptor Blockers
Histamine 2 Receptor Blockers
Renin Angiotensin Aldosterone System
ACE (angiotensin-converting enzyme) Inhibitors
Angiotensin Receptor Blockers
Calcium Channel Blockers
Cardiac Glycosides
Metronidazole (Flagyl) Nursing Considerations
Ciprofloxacin (Cipro) Nursing Considerations
Vancomycin (Vancocin) Nursing Considerations
Anti-Infective – Penicillins and Cephalosporins
Atypical Antipsychotics
Autonomic Nervous System (ANS)
Sympathomimetics (Alpha (Clonodine) & Beta (Albuterol) Agonists)
Parasympathomimetics (Cholinergics) Nursing Considerations
Parasympatholytics (Anticholinergics) Nursing Considerations
Diuretics (Loop, Potassium Sparing, Thiazide, Furosemide/Lasix)
Epoetin Alfa
HMG-CoA Reductase Inhibitors (Statins)
Magnesium Sulfate
NSAIDs
Corticosteroids
Hydralazine (Apresoline) Nursing Considerations
Nitro Compounds
Vasopressin
ABG (Arterial Blood Gas) Interpretation-The Basics
ABG (Arterial Blood Gas) Oxygenation
ABG Course (Arterial Blood Gas) Introduction
ABGs Nursing Normal Lab Values
ABGs Tic-Tac-Toe interpretation Method
Acute Coronary Syndrome (ACS) Module Intro
Base Excess & Deficit
Blood Flow Through The Heart
Cardiac A&P Module Intro
Cardiac Anatomy
Cardiac Course Introduction
Cardiovascular Disorders (CVD) Module Intro
Coronary Circulation
Fluid Compartments
Heart (Cardiac) Failure Module Intro
Heart (Cardiac) Failure Therapeutic Management
Heart (Cardiac) Sound Locations and Auscultation
Hemodynamics
Hemodynamics
Lactic Acid
Metabolic Acidosis (interpretation and nursing diagnosis)
Metabolic Alkalosis
MI Surgical Intervention
Nursing Care and Pathophysiology for Aortic Aneurysm
Nursing Care and Pathophysiology for Arterial Disorders
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Distributive Shock
Nursing Care and Pathophysiology for Heart Failure (CHF)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Valve Disorders
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Nursing Care and Pathophysiology of Endocarditis and Pericarditis
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Nursing Care and Pathophysiology of Myocarditis
Pacemakers
Performing Cardiac (Heart) Monitoring
Potassium-K (Hyperkalemia, Hypokalemia)
Preload and Afterload
Proton Pump Inhibitors
Respiratory Acidosis (interpretation and nursing interventions)
Respiratory Alkalosis
ROME – ABG (Arterial Blood Gas) Interpretation
Shock Module Intro
Venous Disorders (Chronic venous insufficiency, Deep venous thrombosis/DVT)