Electrolytes Involved in Cardiac (Heart) Conduction

You're watching a preview. 300,000+ students are watching the full lesson.
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For Electrolytes Involved in Cardiac (Heart) Conduction

Stemi Myocardial Infarction 12 Lead EKG (Image)
Normal Sinus Rhythm (Image)
10 Common EKG Heart Rhythms (Cheatsheet)
EKG Chart (Cheatsheet)
EKG Electrical Activity Worksheet (Cheatsheet)
Heart Rhythms Signs and Symptoms (Cheatsheet)
EKG Electrical vs Mechanical Worksheet (Cheatsheet)
Heart Rhythm Identification (Cheatsheet)
Sodium (Na+) Lab Value (Picmonic)
Potassium (K+) Lab Value (Picmonic)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Overview

  1. Electrolyte involvement in the heart’s conductivity
  2. Potassium and magnesium are the main intracellular electrolytes
  3. Sodium and Calcium are the main extracellular electrolytes

Nursing Points

General

  1. Extracellular positive ions
    1. Sodium (Na)
      1. Serum plasma levels
        1. 135-145 mEq/L
    2. Calcium (Ca)
      1. Serum plasma levels
        1. 8.4-10.2 mg/dL
  2. Intracellular positive ions
    1. Potassium (K)
      1. Serum plasma levels
        1. 3.5-5.0 mEq/L
    2. Magnesium (Mg)
      1. Serum plasma levels
        1. 1.6-2.6  mg/dL
  3. Action potential                                  
    1. Heart is resting
      1. Negative membrane potential
      2. Na and Ca channels open
      3. Na and Ca enter the cell
      4. Potassium exits the cell
        1. Electrical Stimulation
        2. Depolarization
    2. Contraction complete
      1. Na and Ca channels begin to close          
      2. Na and Ca exit  the cell
      3. Potassium channels open
      4. Potassium enters the cell
        1. Repolarization
  4. Electrolytes
    1. Na
      1. Initiates action potential
    2. Ca
      1. Increases the strength of contraction
    3. K
      1. Terminates action potential
    4. Mg
      1. Helps with repolarization

Assessment

  1. Electrolyte lab values
  2. Assess for dysrhythmias
    1. Ex: Hyperkalemia → Peaked T-waves

Therapeutic Management

  1. Recognize and report abnormal electrolytes
  2. Treat abnormal electrolytes promptly

Nursing Concepts

  1. EKG Rhythms
  2. Fluid & Electrolyte Balance

Patient Education

  1. Maintain adequate sodium, calcium  and potassium intake

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Transcript

Hey guys, in this lesson we will talk about the electrolytes involved in cardiac conduction.

Before we get started, please refer to Fluid and Electrolytes lesson for more detailed information regarding electrolytes, this presentation is specifically for the heart’s conduction and the electrolytes that affect it. So with that being said, let’s get started! Sodium, Potassium, Calcium and Magnesium are the major electrolytes involved in creating electricity so the heart can contract. Without a perfect balance of these electrolytes our hearts will have arrhythmias.

So let’s break down these 2 electrolytes first. Sodium is the major extracellular positive ion, it lives outside of the cell in the intercellular or intravascular space. Anything outside of the cell is extracellular, whether it’s in the vascular space or in between the cells. Normal sodium levels in the plasma are 135-145 mEq/L, this is the amount of sodium outside the cell, there is very little sodium inside the cell. Calcium also lives outside of the cell with sodium and with a positive charge. Normal plasma levels of calcium are 8.4-10.2mg/dL.
Now let’s talk about these two electrolytes. Potassium is the most important intracellular electrolytes in the body, it is positively charged and has a plasma concentration of 3.5-5.5mEq/L. It has a very high concentration inside the cell, so the concentration is less outside of the cell because potassium lives inside the cell. Magnesium is also positively charged with a concentration of 1.6-2.6mg/dL which is also inside the cell.

Now let’s break it down a little further and I am going to explain how the electrolytes actually work. Its starts when an action potential occurs, which is the movement of ions across the cell membrane. Here we have a cell, the cell is full of Potassium, , outside of the cell is Sodium and Calcium which are also positively charged. There are more positively charged cations outside of the cell versus inside of the cell. So the negativity inside the cells initiates an action potential by opening the sodium and calcium channels. This allows sodium to enter rapidly while potassium is exciting the cell, causing the cardiac cells to depolarize or contract. As the calcium enters the cell, it increases the strength of the contraction so ensure the heart pumps out all of the blood in its chambers. So after sodium and calcium have entered the cell and potassium has exited, the threshold has been reached and the heart has finished depolarizing or contracting. Potassium can begin to enter the cell again with the help of Magnesium – it inhibits potassium channels, meaning it prevents potassium from leaking out. When potassium reenters the cell, repolarization occurs. This is seen as the T wave on an EKG waveform, when there is an excessive amount of potassium the heart does not repolarize as easily, so the T wave is elevated on an EKG. So if you see an elevated T wave make sure you know what the potassium values are. As a little side note, think of a calcium channel blocker. It will block calcium from entering the cell, so it will decrease the workload of the heart and dilate arteries because when calcium enters the cell it constricts the arteries. If the channels are blocked,the calcium will not enter the cell and the arteries will dilate. This is why calcium channel blockers are given to people with hypertension and arrhythmias because it slows down the heart’s conduction, workload/oxygen demand, and dilates the arteries.

Key points to remember about these electrolytes, sodium enters the cell and initiates action potential for contraction. It is the main extracellular cation that lives outside the cell.
Calcium is also extracellular and enters the cardiac cell to increase the strength of contraction, by doing so it constricts arteries.
Potassium is the main intracellular electrolyte that exits and re-enters the cell to produce depolarization and repolarization, it also creates the T waves on an EKG
Magnesium is an intracellular cation that assists with repolarization, if mag levels are low it can produce ventricular arrhythmias, usually potassium levels are low as well because it cannot allow the potassium to stay in the cell since it cannot inhibit potassium channels. So potassium leaks out. Mag sulfate is given IV, usually with potassium replacement as well. But need to have mag first so the potassium channels are closed and potassium stays in the cells.

Make sure to check out our other lessons and resources regarding fluid and electrolytes or any other topic you may need additional help with, and as always, go out and be your best selves today and happy nursing!

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Black Friday

Sale

nursing.com black friday sale. up to 80% off a nursing school and ncelx prep must haves

Wow, up to 80% off . . .
We gasped, too! Now, go get ’em.

NP 4 Exam 2

Concepts Covered:

  • Circulatory System
  • Urinary System
  • Adult
  • Basic
  • Test Taking Strategies
  • Prefixes
  • Suffixes
  • Integumentary Disorders
  • Respiratory Disorders
  • Pediatric
  • Bipolar Disorders
  • Immunological Disorders
  • Labor Complications
  • Neonatal
  • Medication Administration
  • Disorders of Pancreas
  • Pregnancy Risks
  • Cardiac Disorders
  • Learning Pharmacology
  • Eating Disorders
  • Dosage Calculations
  • Emergency Care of the Cardiac Patient
  • Substance Abuse Disorders
  • Vascular Disorders
  • Endocrine and Metabolic Disorders
  • Shock
  • Fetal Development
  • Depressive Disorders
  • Anxiety Disorders
  • Cardiovascular Disorders
  • Liver & Gallbladder Disorders
  • Upper GI Disorders
  • Female Reproductive Disorders
  • Neurologic and Cognitive Disorders
  • Personality Disorders
  • Nervous System
  • Urinary Disorders
  • Hematologic Disorders
  • Disorders of the Posterior Pituitary Gland
  • Respiratory System
  • Renal Disorders
  • Noninfectious Respiratory Disorder
  • Shock

Study Plan Lessons

EKG (ECG) Course Introduction
Fluid & Electrolytes Course Introduction
Life Support Review Course Introduction
12 Points to Answering Pharmacology Questions
CPR-BLS (Basic Life Support)
Electrical A&P of the Heart
54 Common Medication Prefixes and Suffixes
Advanced Cardiovascular Life Support (ACLS)
Electrolytes Involved in Cardiac (Heart) Conduction
Fluid Pressures
Vitals (VS) and Assessment
Fluid Shifts (Ascites) (Pleural Effusion)
Pediatric Advanced Life Support (PALS)
Therapeutic Drug Levels (Digoxin, Lithium, Theophylline, Phenytoin)
Essential NCLEX Meds by Class
Isotonic Solutions (IV solutions)
Neonatal Resuscitation Program (NRP)
6 Rights of Medication Administration
Hypotonic Solutions (IV solutions)
Hypertonic Solutions (IV solutions)
Preload and Afterload
Performing Cardiac (Heart) Monitoring
The SOCK Method – Overview
The SOCK Method – S
The SOCK Method – O
The SOCK Method – C
The SOCK Method – K
Basics of Calculations
The EKG (ECG) Graph
Nursing Care and Pathophysiology of Angina
Dimensional Analysis Nursing (Dosage Calculations/Med Math)
EKG (ECG) Waveforms
Sodium-Na (Hypernatremia, Hyponatremia)
Calcium-Ca (Hypercalcemia, Hypocalcemia)
Calculating Heart Rate
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Oral Medications
Chloride-Cl (Hyperchloremia, Hypochloremia)
Injectable Medications
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
IV Infusions (Solutions)
Magnesium-Mg (Hypomagnesemia, Hypermagnesemia)
Complex Calculations (Dosage Calculations/Med Math)
Phosphorus-Phos
Normal Sinus Rhythm
Normal Sinus Rhythm
Nursing Care and Pathophysiology for Heart Failure (CHF)
Sinus Bradycardia
Sinus Bradycardia
Sinus Tachycardia
Sinus Tachycardia
Atrial Flutter
Pacemakers
Atrial Fibrillation (A Fib)
Atrial Fibrillation (A Fib)
Premature Atrial Contraction (PAC)
Supraventricular Tachycardia (SVT)
Premature Ventricular Contraction (PVC)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Ventricular Fibrillation (V Fib)
1st Degree AV Heart Block
2nd Degree AV Heart Block Type 1 (Mobitz I, Wenckebach)
2nd Degree AV Heart Block Type 2 (Mobitz II)
3rd Degree AV Heart Block (Complete Heart Block)
Benzodiazepines
Nursing Care and Pathophysiology of Hypertension (HTN)
Cardiac (Heart) Disease in Pregnancy
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Dehydration
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Distributive Shock
Fetal Circulation
MAOIs
SSRIs
TCAs
Congenital Heart Defects (CHD)
Defects of Increased Pulmonary Blood Flow
Defects of Decreased Pulmonary Blood Flow
Insulin
Obstructive Heart (Cardiac) Defects
Mixed (Cardiac) Heart Defects
Histamine 1 Receptor Blockers
Histamine 2 Receptor Blockers
Renin Angiotensin Aldosterone System
ACE (angiotensin-converting enzyme) Inhibitors
Angiotensin Receptor Blockers
Calcium Channel Blockers
Cardiac Glycosides
Metronidazole (Flagyl) Nursing Considerations
Ciprofloxacin (Cipro) Nursing Considerations
Vancomycin (Vancocin) Nursing Considerations
Anti-Infective – Penicillins and Cephalosporins
Atypical Antipsychotics
Autonomic Nervous System (ANS)
Sympathomimetics (Alpha (Clonodine) & Beta (Albuterol) Agonists)
Parasympathomimetics (Cholinergics) Nursing Considerations
Parasympatholytics (Anticholinergics) Nursing Considerations
Diuretics (Loop, Potassium Sparing, Thiazide, Furosemide/Lasix)
Epoetin Alfa
HMG-CoA Reductase Inhibitors (Statins)
Magnesium Sulfate
NSAIDs
Corticosteroids
Hydralazine (Apresoline) Nursing Considerations
Nitro Compounds
Vasopressin
ABG (Arterial Blood Gas) Interpretation-The Basics
ABG (Arterial Blood Gas) Oxygenation
ABG Course (Arterial Blood Gas) Introduction
ABGs Nursing Normal Lab Values
ABGs Tic-Tac-Toe interpretation Method
Acute Coronary Syndrome (ACS) Module Intro
Base Excess & Deficit
Blood Flow Through The Heart
Cardiac A&P Module Intro
Cardiac Anatomy
Cardiac Course Introduction
Cardiovascular Disorders (CVD) Module Intro
Coronary Circulation
Fluid Compartments
Heart (Cardiac) Failure Module Intro
Heart (Cardiac) Failure Therapeutic Management
Heart (Cardiac) Sound Locations and Auscultation
Hemodynamics
Hemodynamics
Lactic Acid
Metabolic Acidosis (interpretation and nursing diagnosis)
Metabolic Alkalosis
MI Surgical Intervention
Nursing Care and Pathophysiology for Aortic Aneurysm
Nursing Care and Pathophysiology for Arterial Disorders
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Distributive Shock
Nursing Care and Pathophysiology for Heart Failure (CHF)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Valve Disorders
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Nursing Care and Pathophysiology of Endocarditis and Pericarditis
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Nursing Care and Pathophysiology of Myocarditis
Pacemakers
Performing Cardiac (Heart) Monitoring
Potassium-K (Hyperkalemia, Hypokalemia)
Preload and Afterload
Proton Pump Inhibitors
Respiratory Acidosis (interpretation and nursing interventions)
Respiratory Alkalosis
ROME – ABG (Arterial Blood Gas) Interpretation
Shock Module Intro
Venous Disorders (Chronic venous insufficiency, Deep venous thrombosis/DVT)