Fluid Pressures

You're watching a preview. 300,000+ students are watching the full lesson.
Nichole Weaver
MSN/Ed,RN,CCRN
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For Fluid Pressures

Osmotic Pressure (Image)
Osmosis Diagram (Image)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Overview

  1. Pressures in the body
    1. Osmotic
    2. Hydrostatic
    3. Oncotic
      1. AKA “Colloid Osmotic Pressure”

Nursing Points

 

General

  1. Osmotic Pressure
    1. Definition
      1. Force required to push a solvent through a solution
    2. Refers to concentration & capacity for osmosis (movement of water)
    3. More solutes = more concentrated = higher osmotic pressure
    4. Less solutes = less concentrated = lower osmotic pressure
    5. Works to create equilibrium across semipermeable membranes
  2. Hydrostatic Pressure
    1. Definition
      1. Force exerted by fluid/water in blood vessels pushing fluid and solutes OUT of the vessels
      2. “Pushing Force”
    2. Higher pressure = more water and solutes being forced out of the vessels
    3. Like forcing juice through a cheesecloth
    4. Opposing force to Oncotic Pressure
  3. Oncotic Pressure
    1. Definition
      1. Force exerted by proteins in the bloodstream that tend to pull water into vessels
      2. “Pulling Force”
    2. Most common protein = Albumin
    3. “Protein Pulls”
    4. Opposing force to Hydrostatic Pressure

Assessment

  1. Osmolarity v. Tonicity
    1. Osmolarity = concentration / osmotic pressure of a given solution
      1. Osmolarity of the blood = 275-295 mOsm/L
    2. Tonicity = comparison of the osmolarity of one solution compared to another
      1. More concentrated = higher osmolarity = hypertonic
      2. Less concentrated = lower osmolarity = hypotonic
      3. Same concentration = isotonic

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Transcript

In this lesson we’re going to talk about fluid pressures. In the last lesson we talked about where the fluid is and how it moves in the body. Now, we’re going to talk about why it moves around. There are three main pressures within the bloodstream and body fluids that force the movement of fluid and electrolytes throughout the body, so let’s look at each of those now.

The three pressures are Osmotic Pressure, Hydrostatic Pressure, and Oncotic Pressure – also known as “Colloid Osmotic Pressure”. When you think of Osmotic Pressure, I want you to think concentration. This pressure refers to how water moves through the body because of concentration gradients – remember we talked about Osmosis? So if you have one solution that’s super concentrated, and another that’s more dilute – and a semipermeable membrane between them…the water is going to want to move into the more concentrated one. That force that moves the water in that direction is called Osmotic Pressure. Next is hydrostatic pressure. When you hear this I want you to think about a pushing pressure. This is the pressure exerted by the water inside blood vessels that is physically pushing outward. Think about if you filled up a cheesecloth bag with water – it would probably just drip out, right? But if you squeeze the bag, more and more water will come out. That’s hydrostatic pressure. It’s the physical force exerted by water that forces water and some particles OUT of the blood stream. And finally we have oncotic pressure. When you hear this, I want you to think “Protein Pulls”. This is the pressure exerted by proteins and they tend to pull water and fluid toward them. The most common protein in the bloodstream that does this is albumin.

So, let’s just look at what this would look like in the blood stream. Let’s say we have a super high blood sugar or some super high electrolytes in the blood. Based on Osmotic pressure, which way is the fluid going to want to shift? It’s going to shift INTO the bloodstream, right? It’s trying to balance out those concentrations. The blood develops this high osmolarity and the water shifts this way. If the blood was super dilute compared to the interstitial space, then water shifts the other way – it’s entirely based on concentrations. Now, let’s talk hydrostatic pressure. We see this mostly in the capillaries – the super tiny blood vessels. The fluid in those vessels ends up being under tremendous pressure because there’s more fluid in a smaller space, so it forces this fluid out of the vessels. A great example of this is the filtration that happens in the glomerulus in the kidneys. It’s a tuft of capillaries with a super high hydrostatic pressure and it forces the fluid and solutes out of the bloodstream. And finally we have Oncotic pressure. Remember this is about protein pulling water towards it. Most of the time we have a bunch of albumin in the bloodstream and it helps pull water in and hold it in. If we start losing that albumin, we losing our pulling power. OR if we start getting protein leaking out of the vessels, it will pull the water with it. So that’s oncotic pressure. In the next lesson we’ll look more at what conditions make fluids shift around to places we don’t really want them in our bodies.

Before we wrap up, I just want to mention one thing quickly. I’ve talked about osmolarity when I talked about osmotic pressure, but when we start talking about IV fluids, you’re going to start hearing about tonicity – so I want to explain the difference. Osmolarity is the concentration of a given solution. So we’re just looking at one solution – like the blood for example. The more solute there is dissolved in it, the higher the osmolarity and the more concentrated it is. The less solute dissolved in it, the lower the osmolarity and the more dilute it is. So, the normal blood osmolarity measurement is 275 – 295 mOsm/L. Now, when we talk about Tonicity – we’re actually comparing the osmolarity of 2 different solutions. So we may compare something to the blood for example. If the solution is more concentrated than the blood, we’d say it’s hypertonic. If it’s less concentrated than the blood we’d say it’s hypotonic. And if it has about the same concentration, we’d say it’s isotonic. So keep these things in mind and keep these pressures in mind as we start to look at fluid shifts and the different types of IV fluid solutions.

Just a quick recap. Osmotic pressure is related to the concentration and refers to the process of osmosis – the movement of water based on a concentration gradient. Hydrostatic pressure is the pushing pressure of water in a vessel that forces fluid and solutes outward, out of the vessel – like in the glomerulus. And Oncotic Pressure is the pulling pressure of proteins like albumin that help pull water into the vessels and hold it there. And also remember the difference between osmolarity and tonicity. Osmolarity looks at the concentration of one solution, whereas tonicity compares the concentration of two solutions – again usually we’re comparing something to the osmolarity of the blood.

Keep watching all the lessons in the Fluid & Electrolyte course to really see the big picture of how fluid moves throughout our bodies. Make sure you check out all the resources attached to this lesson as well. Now, go out and be your best selves today. And, as always, happy nursing!!

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Black Friday

Sale

nursing.com black friday sale. up to 80% off a nursing school and ncelx prep must haves

Wow, up to 80% off . . .
We gasped, too! Now, go get ’em.

NP 4 Exam 2

Concepts Covered:

  • Circulatory System
  • Urinary System
  • Adult
  • Basic
  • Test Taking Strategies
  • Prefixes
  • Suffixes
  • Integumentary Disorders
  • Respiratory Disorders
  • Pediatric
  • Bipolar Disorders
  • Immunological Disorders
  • Labor Complications
  • Neonatal
  • Medication Administration
  • Disorders of Pancreas
  • Pregnancy Risks
  • Cardiac Disorders
  • Learning Pharmacology
  • Eating Disorders
  • Dosage Calculations
  • Emergency Care of the Cardiac Patient
  • Substance Abuse Disorders
  • Vascular Disorders
  • Endocrine and Metabolic Disorders
  • Shock
  • Fetal Development
  • Depressive Disorders
  • Anxiety Disorders
  • Cardiovascular Disorders
  • Liver & Gallbladder Disorders
  • Upper GI Disorders
  • Female Reproductive Disorders
  • Neurologic and Cognitive Disorders
  • Personality Disorders
  • Nervous System
  • Urinary Disorders
  • Hematologic Disorders
  • Disorders of the Posterior Pituitary Gland
  • Respiratory System
  • Renal Disorders
  • Noninfectious Respiratory Disorder
  • Shock

Study Plan Lessons

EKG (ECG) Course Introduction
Fluid & Electrolytes Course Introduction
Life Support Review Course Introduction
12 Points to Answering Pharmacology Questions
CPR-BLS (Basic Life Support)
Electrical A&P of the Heart
54 Common Medication Prefixes and Suffixes
Advanced Cardiovascular Life Support (ACLS)
Electrolytes Involved in Cardiac (Heart) Conduction
Fluid Pressures
Vitals (VS) and Assessment
Fluid Shifts (Ascites) (Pleural Effusion)
Pediatric Advanced Life Support (PALS)
Therapeutic Drug Levels (Digoxin, Lithium, Theophylline, Phenytoin)
Essential NCLEX Meds by Class
Isotonic Solutions (IV solutions)
Neonatal Resuscitation Program (NRP)
6 Rights of Medication Administration
Hypotonic Solutions (IV solutions)
Hypertonic Solutions (IV solutions)
Preload and Afterload
Performing Cardiac (Heart) Monitoring
The SOCK Method – Overview
The SOCK Method – S
The SOCK Method – O
The SOCK Method – C
The SOCK Method – K
Basics of Calculations
The EKG (ECG) Graph
Nursing Care and Pathophysiology of Angina
Dimensional Analysis Nursing (Dosage Calculations/Med Math)
EKG (ECG) Waveforms
Sodium-Na (Hypernatremia, Hyponatremia)
Calcium-Ca (Hypercalcemia, Hypocalcemia)
Calculating Heart Rate
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Oral Medications
Chloride-Cl (Hyperchloremia, Hypochloremia)
Injectable Medications
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
IV Infusions (Solutions)
Magnesium-Mg (Hypomagnesemia, Hypermagnesemia)
Complex Calculations (Dosage Calculations/Med Math)
Phosphorus-Phos
Normal Sinus Rhythm
Normal Sinus Rhythm
Nursing Care and Pathophysiology for Heart Failure (CHF)
Sinus Bradycardia
Sinus Bradycardia
Sinus Tachycardia
Sinus Tachycardia
Atrial Flutter
Pacemakers
Atrial Fibrillation (A Fib)
Atrial Fibrillation (A Fib)
Premature Atrial Contraction (PAC)
Supraventricular Tachycardia (SVT)
Premature Ventricular Contraction (PVC)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Ventricular Fibrillation (V Fib)
1st Degree AV Heart Block
2nd Degree AV Heart Block Type 1 (Mobitz I, Wenckebach)
2nd Degree AV Heart Block Type 2 (Mobitz II)
3rd Degree AV Heart Block (Complete Heart Block)
Benzodiazepines
Nursing Care and Pathophysiology of Hypertension (HTN)
Cardiac (Heart) Disease in Pregnancy
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Dehydration
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Distributive Shock
Fetal Circulation
MAOIs
SSRIs
TCAs
Congenital Heart Defects (CHD)
Defects of Increased Pulmonary Blood Flow
Defects of Decreased Pulmonary Blood Flow
Insulin
Obstructive Heart (Cardiac) Defects
Mixed (Cardiac) Heart Defects
Histamine 1 Receptor Blockers
Histamine 2 Receptor Blockers
Renin Angiotensin Aldosterone System
ACE (angiotensin-converting enzyme) Inhibitors
Angiotensin Receptor Blockers
Calcium Channel Blockers
Cardiac Glycosides
Metronidazole (Flagyl) Nursing Considerations
Ciprofloxacin (Cipro) Nursing Considerations
Vancomycin (Vancocin) Nursing Considerations
Anti-Infective – Penicillins and Cephalosporins
Atypical Antipsychotics
Autonomic Nervous System (ANS)
Sympathomimetics (Alpha (Clonodine) & Beta (Albuterol) Agonists)
Parasympathomimetics (Cholinergics) Nursing Considerations
Parasympatholytics (Anticholinergics) Nursing Considerations
Diuretics (Loop, Potassium Sparing, Thiazide, Furosemide/Lasix)
Epoetin Alfa
HMG-CoA Reductase Inhibitors (Statins)
Magnesium Sulfate
NSAIDs
Corticosteroids
Hydralazine (Apresoline) Nursing Considerations
Nitro Compounds
Vasopressin
ABG (Arterial Blood Gas) Interpretation-The Basics
ABG (Arterial Blood Gas) Oxygenation
ABG Course (Arterial Blood Gas) Introduction
ABGs Nursing Normal Lab Values
ABGs Tic-Tac-Toe interpretation Method
Acute Coronary Syndrome (ACS) Module Intro
Base Excess & Deficit
Blood Flow Through The Heart
Cardiac A&P Module Intro
Cardiac Anatomy
Cardiac Course Introduction
Cardiovascular Disorders (CVD) Module Intro
Coronary Circulation
Fluid Compartments
Heart (Cardiac) Failure Module Intro
Heart (Cardiac) Failure Therapeutic Management
Heart (Cardiac) Sound Locations and Auscultation
Hemodynamics
Hemodynamics
Lactic Acid
Metabolic Acidosis (interpretation and nursing diagnosis)
Metabolic Alkalosis
MI Surgical Intervention
Nursing Care and Pathophysiology for Aortic Aneurysm
Nursing Care and Pathophysiology for Arterial Disorders
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Distributive Shock
Nursing Care and Pathophysiology for Heart Failure (CHF)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Valve Disorders
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Nursing Care and Pathophysiology of Endocarditis and Pericarditis
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Nursing Care and Pathophysiology of Myocarditis
Pacemakers
Performing Cardiac (Heart) Monitoring
Potassium-K (Hyperkalemia, Hypokalemia)
Preload and Afterload
Proton Pump Inhibitors
Respiratory Acidosis (interpretation and nursing interventions)
Respiratory Alkalosis
ROME – ABG (Arterial Blood Gas) Interpretation
Shock Module Intro
Venous Disorders (Chronic venous insufficiency, Deep venous thrombosis/DVT)