Hypotonic Solutions (IV solutions)

You're watching a preview. 300,000+ students are watching the full lesson.
Brad Bass
ASN,RN
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For Hypotonic Solutions (IV solutions)

IV Solutions (Cheatsheet)
Tonicity of Fluids (Image)
Hypotonic Solutions (Image)
IV Solutions (Picmonic)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Overview

  1. Hypotonic solutions
    1. Lower osmolarity than blood
    2. < 250 mOsm/L

Nursing Points

 

General

  1. Examples
    1. 0.45% Sodium Chloride (“½ Normal Saline)
    2. 0.33% or 0.2% Sodium Chloride
    3. 2.5% Dextrose in Water (D2.5W)
    4. Sterile Water (rarely given IV)

Assessment

  1. Fluid shifts
    1. OUT of vessels
    2. INTO cells
    3. INTO interstitial spaces
  2. Effects on cells
    1. Cells swells
    2. Can burst (lysis)

Therapeutic Management

  1. Indications for use
    1. Cellular Dehydration
      1. DKA
      2. HHNS
    2. Hypernatremia
  2. Contraindications
    1. Hypovolemia
    2. Burns
    3. Increased ICP
      1. Could cause further cerebral edema

Nursing Concepts

  1. Fluid & Electrolyte Balance

Patient Education

  1. Report s/s increased ICP (headache, vision changes)

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Transcript

Hey guys, my name is Brad and welcome to nursing.com. And in today’s video, what we’re going to be doing is we’re going to discuss hypotonic solutions. What I’d like to do is discuss what they are, how they work, some of the different types that there are, and some of the assessment findings that we may see in patients who are receiving them. Let’s go ahead and dive in. 

So whenever we’re talking about hypotonic solutions, the way that I like to remember this is hypotonic hydrate cells, specifically, right? Hypotonic solutions, hydrate cells. Now, how is it able to do this, right? Now we’re going to be going back kind of like to some high school chem almost.  A lot of us may have forgotten this, but what we’re pretty much looking at here, right, the way that the movement of water occurs is through osmosis. And it does so across the semipermeable cellular membrane. You may remember, right, along the outside of our cells, we have a membrane called a, basically a phospholipid bilayer, but it is a semipermeable membrane. And this is a membrane, a cellular membrane that allows the passage of certain solutes and molecules as well as water to pass across this membrane and move interchangeably between the intracellular compartment as well as the intravascular compartment. So, the way in which a hypotonic fluid works is hypotonic, you can consider is less solutes, right? Let’s consider hypotonic as being less solutes, or less concentrated than the cells in the body. And the way in which fluid moves, through osmosis, it moves from an area of lower concentration across the semipermeable membrane to areas of higher concentration. And so what essentially occurs here is we administer a hypotonic, or a less concentrated fluid intravenously, and what’s going to occur, because this fluid is less concentrated than the cell, it is going to move into the cell and hydrate the cell. This is why we say hypotonic fluids hydrate cells. 

Of course, this is not without certain risks and benefits. So what are some of the benefits and risks that we may see associated with hypotonic fluids?  Now, in regards to benefits, we usually will see hypotonic fluids used in situations such as DKA. We may see a dextrose containing hypotonic fluid administered to try and prevent hypoglycemia from occurring as we’re administering IV insulin to help treat DKA. I don’t want to cloud your mind too much with the concept of DKA. Make sure you check out our other lessons on DKA if you would like further clarity regarding the administration of hypotonic fluids during DKA.  But just know that there are some benefits used in DKA with hypotonic fluids, but our risks are something that are absolutely paramount that you’re going to want to be mindful of. So think about it as we’re administering a hypotonic fluid intravenously, we’re administering a less concentrated fluid intravenously. It’s going to cause fluid to move from the intravenous compartment into the cell. Now think about it. As this occurs more and more, more and more fluid is going into the cells. What can actually happen is we can cause cellular rupture. And this is actually clinically important and instances such as cerebral edema, right? As we’re administering this less concentrated fluid, fluid is going to be moving into the brain tissues. And if we over hydrate the brain tissues, remember hypotonic fluids hydrate cells, if we over hydrate the cells of the brain, this is going to lead to cerebral edema. A very big, important thing to know. Also, I want you to keep in mind something else as a concept, you might think we’re administering a IV fluid, so we’re hydrating our patient. Actually, we’re kind of doing the opposite and this is another risk of hypotonic IV fluids.  Remember we’re administering a less concentrated fluid. This is going to cause movement of water through that semipermeable membrane into the cells and out of that intravascular compartment. So what can actually occur, paradoxically, as we administer this IV fluid, instead of hydrating our patients, we’re actually moving fluid from the intravascular compartment into the cell. So that’s why I say it’s important to know in hypotonic fluids, we’re hydrating cells. That’s the big differentiator we can actually intravascularly volume deplete our patients. So it’s just something important to know a little caveat to the administration of hypotonic, IV fluids. 

So what are some examples of different hypotonic IV fluids that you may come across? I put these up here. I just think it’s important that you familiarize yourself with them to be able to identify them for testing purposes. But essentially we’re looking at a hypotonic, IV fluid as a fluid that is less than 0.9% normal saline, right? We consider 0.9%. normal saline, our everyday normal saline, as isotonic.  It’s isotonic with our blood. Hypotonic solutions or anything, essentially less than 0.9% normal saline. So it’s going to be things such as 1/2 normal saline (0.45% Sodium Chloride), ¼  normal saline (0.225% NS), D5 in half normal saline (5% Dextrose and 0.45% Sodium Chloride) something that might be used in DKA, for instance, as well as D5 in water (5% Dextrose) 

But what are some assessment findings or things that we’re going to keep an eye out for as nurses? Whenever we’re administering hypotonic IV fluids, right, and these all kind of circle back to those risks that are associated with the administration of these fluids. Let’s all remember right, as we previously described, we have the blood vessel and here we have our red blood cells. And because we’re administering a less concentrated fluid, it’s going to cause fluid to go from the intravascular compartment into our intracellular compartment. 

Let me also stop right there and make sure that I remind you if you have not already checked out our fluid compartments lesson, be sure to check that out as well, if you’re a little bit, unsure or not quite grasping, what the heck we’re about whenever we’re saying intravascular compartment, intracellular compartment, et cetera. But again, our assessment findings are related to those risk factors. So as we’re hydrating cells with hypotonic solutions, we are intravascularly depleting our patients of volume, right? The water is not staying in the intravascular compartment. It is exiting and moving into these cells. As that occurs, we’re going to intravascularly deplete our patient of the volume in their vessels. This can cause hypovolemia. This can cause a drop in blood pressure. All as a result of this osmotic movement of fluid from our intravascular compartment into our cells. And then of course, we’re going to make sure that we keep an eye out for patients experiencing headache or decreased levels of consciousness as this may be reflective of that movement of fluid into those brain tissues, leading to cerebral edema. 

And so summarizing some of our key points related to hypotonic solutions, remember hypotonic hydrate cells, not the patient.  It hydrates cells. Causing osmotic movement of fluid across that semipermeable membrane from the intravascular compartment into the intracellular compartment. Again, check out our fluid compartments videos should you need further clarity.  Also understanding the benefits and risks of using IV hypotonic fluids.  Benefits in instances, such as DKA.  And then the risk of cerebral edema, movement of fluid into the brain tissues, as well as intravascularly depleting our patients volume causing hypovolemia, causing hypotension. Also make sure that you familiarize yourself with the different types of IV fluids, as well as understanding that those assessment components that we can see in patients are all reflective of that osmotic movement of fluid into cells.  

Guys, I really hope that this video helped bring clarity to this concept of hypotonic solutions. And I hope that you’re able to take the things that you learned here today forward with you and be successful on your exams. I hope that you guys go out there and be your best selves today.  And as always, happy nursing.

 

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

NP4 exam1

Concepts Covered:

  • Circulatory System
  • Urinary System
  • Noninfectious Respiratory Disorder
  • Respiratory System
  • Integumentary Disorders
  • Respiratory Disorders
  • Labor Complications
  • Disorders of Pancreas
  • Pregnancy Risks
  • Cardiac Disorders
  • Eating Disorders
  • Respiratory Emergencies
  • Infectious Respiratory Disorder
  • Emergency Care of the Cardiac Patient
  • Vascular Disorders
  • Shock
  • Medication Administration
  • Upper GI Disorders
  • Fundamentals of Emergency Nursing
  • Understanding Society
  • Adulthood Growth and Development
  • Oncologic Disorders
  • Postoperative Nursing
  • Renal Disorders
  • Microbiology
  • Intraoperative Nursing
  • Shock
  • Tissues and Glands
  • Newborn Care

Study Plan Lessons

EKG (ECG) Course Introduction
Fluid & Electrolytes Course Introduction
Respiratory Course Introduction
Electrical A&P of the Heart
Respiratory A&P Module Intro
Electrolytes Involved in Cardiac (Heart) Conduction
Fluid Pressures
Lung Sounds
Alveoli & Atelectasis
Alveoli & Atelectasis
Fluid Shifts (Ascites) (Pleural Effusion)
Gas Exchange
Gas Exchange
Isotonic Solutions (IV solutions)
Hypotonic Solutions (IV solutions)
Hypertonic Solutions (IV solutions)
Preload and Afterload
Performing Cardiac (Heart) Monitoring
Lung Diseases Module Intro
The EKG (ECG) Graph
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology for Asthma
EKG (ECG) Waveforms
Sodium-Na (Hypernatremia, Hyponatremia)
Calcium-Ca (Hypercalcemia, Hypocalcemia)
Calculating Heart Rate
Nursing Care and Pathophysiology of COPD (Chronic Obstructive Pulmonary Disease)
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Nursing Care and Pathophysiology of COPD (Chronic Obstructive Pulmonary Disease)
Chloride-Cl (Hyperchloremia, Hypochloremia)
Restrictive Lung Diseases (Pulmonary Fibrosis, Neuromuscular Disorders)
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Magnesium-Mg (Hypomagnesemia, Hypermagnesemia)
Nursing Care and Pathophysiology of Acute Respiratory Distress Syndrome (ARDS)
Nursing Care and Pathophysiology for Pulmonary Edema
Phosphorus-Phos
Normal Sinus Rhythm
Normal Sinus Rhythm
Respiratory Infections Module Intro
Nursing Care and Pathophysiology for Heart Failure (CHF)
Nursing Care and Pathophysiology for Influenza (Flu)
Sinus Bradycardia
Sinus Bradycardia
Sinus Tachycardia
Sinus Tachycardia
Nursing Care and Pathophysiology for Tuberculosis (TB)
Atrial Flutter
Pacemakers
Nursing Care and Pathophysiology of Pneumonia
Atrial Fibrillation (A Fib)
Atrial Fibrillation (A Fib)
Coronavirus (COVID-19) Nursing Care and General Information
Premature Atrial Contraction (PAC)
Supraventricular Tachycardia (SVT)
Premature Ventricular Contraction (PVC)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Ventricular Fibrillation (V Fib)
1st Degree AV Heart Block
2nd Degree AV Heart Block Type 1 (Mobitz I, Wenckebach)
2nd Degree AV Heart Block Type 2 (Mobitz II)
3rd Degree AV Heart Block (Complete Heart Block)
Oxygen Delivery Module Intro
Hierarchy of O2 Delivery
Nursing Care and Pathophysiology of Hypertension (HTN)
Artificial Airways
Artificial Airways
Airway Suctioning
Airway Suctioning
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Respiratory Trauma Module Intro
Blunt Chest Trauma
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Chest Tube Management
Nursing Care and Pathophysiology for Distributive Shock
Nursing Care and Pathophysiology for Pulmonary Embolism
Respiratory Procedures Module Intro
ABG (Arterial Blood Gas) Interpretation-The Basics
ABG (Arterial Blood Gas) Oxygenation
ABG Course (Arterial Blood Gas) Introduction
ABGs Nursing Normal Lab Values
ABGs Tic-Tac-Toe interpretation Method
Acute Coronary Syndrome (ACS) Module Intro
Bariatric: IV Insertion
Base Excess & Deficit
Blood Flow Through The Heart
Bronchoscopy
Cardiac A&P Module Intro
Cardiac Anatomy
Cardiac Course Introduction
Cardiovascular Disorders (CVD) Module Intro
Chest Tube Management
Combative: IV Insertion
Coronary Circulation
Dark Skin: IV Insertion
Drawing Blood from the IV
Fluid Compartments
Geriatric: IV Insertion
Giving Medication Through An IV Set Port
Heart (Cardiac) Failure Module Intro
Heart (Cardiac) Failure Therapeutic Management
Heart (Cardiac) Sound Locations and Auscultation
Hemodynamics
Hemodynamics
How to Remove (discontinue) an IV
How to Secure an IV (chevron, transparent dressing)
Isolation Precautions (MRSA, C. Difficile, Meningitis, Pertussis, Tuberculosis, Neutropenia)
IV Catheter Selection (gauge, color)
IV Complications (infiltration, phlebitis, hematoma, extravasation, air embolism)
IV Drip Administration & Safety Checks
IV Drip Therapy – Medications Used for Drips
IV Insertion Angle
IV Insertion Course Introduction
IV Placement Start To Finish (How to Start an IV)
Lactic Acid
Lung Sounds
Maintenance of the IV
Metabolic Acidosis (interpretation and nursing diagnosis)
Metabolic Alkalosis
MI Surgical Intervention
Needle Safety
Nursing Care and Pathophysiology for Aortic Aneurysm
Nursing Care and Pathophysiology for Arterial Disorders
Nursing Care and Pathophysiology for Asthma
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Distributive Shock
Nursing Care and Pathophysiology for Heart Failure (CHF)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Influenza (Flu)
Nursing Care and Pathophysiology for Pneumothorax & Hemothorax
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Tuberculosis (TB)
Nursing Care and Pathophysiology for Valve Disorders
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Nursing Care and Pathophysiology of Endocarditis and Pericarditis
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Nursing Care and Pathophysiology of Myocarditis
Nursing Care and Pathophysiology of Pneumonia
Pacemakers
Performing Cardiac (Heart) Monitoring
Positioning
Potassium-K (Hyperkalemia, Hypokalemia)
Preload and Afterload
Respiratory Acidosis (interpretation and nursing interventions)
Respiratory Alkalosis
ROME – ABG (Arterial Blood Gas) Interpretation
Selecting THE vein
Shock Module Intro
Supplies Needed
Tattoos IV Insertion
Thoracentesis
Tips & Tricks
Tips & Advice for Newborns (Neonatal IV Insertion)
Tips & Advice for Pediatric IV
Understanding All The IV Set Ports
Using Aseptic Technique
Venous Disorders (Chronic venous insufficiency, Deep venous thrombosis/DVT)
Vent Alarms