The EKG (ECG) Graph

You're watching a preview. 300,000+ students are watching the full lesson.
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For The EKG (ECG) Graph

Parts of EKG waveform (Image)
EKG Chart (Cheatsheet)
EKG Electrical Activity Worksheet (Cheatsheet)
10 Common EKG Heart Rhythms (Cheatsheet)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Overview of the EKG Graph

  1. The EKG graph represents the electrical conduction of the heart
  2. Assists with identifying heart rate and rhythm

Nursing Points for EKG Graphs

General EKG information

  1. EKG graph
    1. Y-axis – Vertical
      1. Voltage
      2. 1 large box
        1. 0.5mV
    2. X-axis -Horizontal
      1. Time in seconds
    3. Large box
      1. 0.20 Seconds
    4. Smaller boxes
      1. 0.04 seconds
    5. Markings
      1. Top of graph paper
      2. 3 seconds apart

Common Nursing Concepts for EKG Graphs

  1. EKG Rhythms

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Transcript

Hey guys in this lesson we are going to break down the EKG graph paper

Ok so here we have an EKG graph, we have our Y axis which is the vertical line and it measures the voltage. One large box is 0.5 millivolts. This is important when measuring the amplitude of the waveforms, especially when there is an elevation that should not be there, like in a STEMI. We also have our X axis which is the horizontal line and it measures time in seconds. As you can see, there are big boxes and in each big box there are 5 small boxes. The big box is 0.20 seconds and the smaller one is 0.04 seconds. So let’s break that down a little more!

So here is a big box, again from here to here is 0.20 seconds, if you look at these smaller boxes, they are each 0.04 seconds. There are 5 small boxes in 1 big box. If you multiply each box that is 0.04 seconds by 5 it equals 0.20 seconds. The seconds in these boxes are important when you have to identify how long it takes for one waveform to get to the other. At the top of this paper, you will also see these markings, these markings are usually every 3 seconds but in this particular graph they are every second, the markings are not always there. So if you have an EKG paper that does not have the markings at the top just know that 5 large boxes is 1 second, 15 boxes are 3 and 30 boxes are 6 seconds. So knowing that will help you identify if you are looking at a 6 second strip.

So the key points to remember are the Y- axis is the vertical line and it measures voltage, basically how high are the waveforms getting. The x-axis is the horizontal line which measures seconds. The large boxes have 5 smaller boxes in them, the large box is 0.20 seconds and the Small boxes are 0.04 seconds. Each EKG graph paper has markings at the top and they are 3 seconds apart. I hope this has helped yall identifying the lines on the graph paper!

Make sure you check out all of the resources attached to this lesson. Now, go out and be your best self today! And, as always, happy nursing!

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

NP4 exam1

Concepts Covered:

  • Circulatory System
  • Urinary System
  • Noninfectious Respiratory Disorder
  • Respiratory System
  • Integumentary Disorders
  • Respiratory Disorders
  • Labor Complications
  • Disorders of Pancreas
  • Pregnancy Risks
  • Cardiac Disorders
  • Eating Disorders
  • Respiratory Emergencies
  • Infectious Respiratory Disorder
  • Emergency Care of the Cardiac Patient
  • Vascular Disorders
  • Shock
  • Medication Administration
  • Upper GI Disorders
  • Fundamentals of Emergency Nursing
  • Understanding Society
  • Adulthood Growth and Development
  • Oncologic Disorders
  • Postoperative Nursing
  • Renal Disorders
  • Microbiology
  • Intraoperative Nursing
  • Shock
  • Tissues and Glands
  • Newborn Care

Study Plan Lessons

EKG (ECG) Course Introduction
Fluid & Electrolytes Course Introduction
Respiratory Course Introduction
Electrical A&P of the Heart
Respiratory A&P Module Intro
Electrolytes Involved in Cardiac (Heart) Conduction
Fluid Pressures
Lung Sounds
Alveoli & Atelectasis
Alveoli & Atelectasis
Fluid Shifts (Ascites) (Pleural Effusion)
Gas Exchange
Gas Exchange
Isotonic Solutions (IV solutions)
Hypotonic Solutions (IV solutions)
Hypertonic Solutions (IV solutions)
Preload and Afterload
Performing Cardiac (Heart) Monitoring
Lung Diseases Module Intro
The EKG (ECG) Graph
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology for Asthma
EKG (ECG) Waveforms
Sodium-Na (Hypernatremia, Hyponatremia)
Calcium-Ca (Hypercalcemia, Hypocalcemia)
Calculating Heart Rate
Nursing Care and Pathophysiology of COPD (Chronic Obstructive Pulmonary Disease)
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Nursing Care and Pathophysiology of COPD (Chronic Obstructive Pulmonary Disease)
Chloride-Cl (Hyperchloremia, Hypochloremia)
Restrictive Lung Diseases (Pulmonary Fibrosis, Neuromuscular Disorders)
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Magnesium-Mg (Hypomagnesemia, Hypermagnesemia)
Nursing Care and Pathophysiology of Acute Respiratory Distress Syndrome (ARDS)
Nursing Care and Pathophysiology for Pulmonary Edema
Phosphorus-Phos
Normal Sinus Rhythm
Normal Sinus Rhythm
Respiratory Infections Module Intro
Nursing Care and Pathophysiology for Heart Failure (CHF)
Nursing Care and Pathophysiology for Influenza (Flu)
Sinus Bradycardia
Sinus Bradycardia
Sinus Tachycardia
Sinus Tachycardia
Nursing Care and Pathophysiology for Tuberculosis (TB)
Atrial Flutter
Pacemakers
Nursing Care and Pathophysiology of Pneumonia
Atrial Fibrillation (A Fib)
Atrial Fibrillation (A Fib)
Coronavirus (COVID-19) Nursing Care and General Information
Premature Atrial Contraction (PAC)
Supraventricular Tachycardia (SVT)
Premature Ventricular Contraction (PVC)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Ventricular Fibrillation (V Fib)
1st Degree AV Heart Block
2nd Degree AV Heart Block Type 1 (Mobitz I, Wenckebach)
2nd Degree AV Heart Block Type 2 (Mobitz II)
3rd Degree AV Heart Block (Complete Heart Block)
Oxygen Delivery Module Intro
Hierarchy of O2 Delivery
Nursing Care and Pathophysiology of Hypertension (HTN)
Artificial Airways
Artificial Airways
Airway Suctioning
Airway Suctioning
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Respiratory Trauma Module Intro
Blunt Chest Trauma
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Chest Tube Management
Nursing Care and Pathophysiology for Distributive Shock
Nursing Care and Pathophysiology for Pulmonary Embolism
Respiratory Procedures Module Intro
ABG (Arterial Blood Gas) Interpretation-The Basics
ABG (Arterial Blood Gas) Oxygenation
ABG Course (Arterial Blood Gas) Introduction
ABGs Nursing Normal Lab Values
ABGs Tic-Tac-Toe interpretation Method
Acute Coronary Syndrome (ACS) Module Intro
Bariatric: IV Insertion
Base Excess & Deficit
Blood Flow Through The Heart
Bronchoscopy
Cardiac A&P Module Intro
Cardiac Anatomy
Cardiac Course Introduction
Cardiovascular Disorders (CVD) Module Intro
Chest Tube Management
Combative: IV Insertion
Coronary Circulation
Dark Skin: IV Insertion
Drawing Blood from the IV
Fluid Compartments
Geriatric: IV Insertion
Giving Medication Through An IV Set Port
Heart (Cardiac) Failure Module Intro
Heart (Cardiac) Failure Therapeutic Management
Heart (Cardiac) Sound Locations and Auscultation
Hemodynamics
Hemodynamics
How to Remove (discontinue) an IV
How to Secure an IV (chevron, transparent dressing)
Isolation Precautions (MRSA, C. Difficile, Meningitis, Pertussis, Tuberculosis, Neutropenia)
IV Catheter Selection (gauge, color)
IV Complications (infiltration, phlebitis, hematoma, extravasation, air embolism)
IV Drip Administration & Safety Checks
IV Drip Therapy – Medications Used for Drips
IV Insertion Angle
IV Insertion Course Introduction
IV Placement Start To Finish (How to Start an IV)
Lactic Acid
Lung Sounds
Maintenance of the IV
Metabolic Acidosis (interpretation and nursing diagnosis)
Metabolic Alkalosis
MI Surgical Intervention
Needle Safety
Nursing Care and Pathophysiology for Aortic Aneurysm
Nursing Care and Pathophysiology for Arterial Disorders
Nursing Care and Pathophysiology for Asthma
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Distributive Shock
Nursing Care and Pathophysiology for Heart Failure (CHF)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Influenza (Flu)
Nursing Care and Pathophysiology for Pneumothorax & Hemothorax
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Tuberculosis (TB)
Nursing Care and Pathophysiology for Valve Disorders
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Nursing Care and Pathophysiology of Endocarditis and Pericarditis
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Nursing Care and Pathophysiology of Myocarditis
Nursing Care and Pathophysiology of Pneumonia
Pacemakers
Performing Cardiac (Heart) Monitoring
Positioning
Potassium-K (Hyperkalemia, Hypokalemia)
Preload and Afterload
Respiratory Acidosis (interpretation and nursing interventions)
Respiratory Alkalosis
ROME – ABG (Arterial Blood Gas) Interpretation
Selecting THE vein
Shock Module Intro
Supplies Needed
Tattoos IV Insertion
Thoracentesis
Tips & Tricks
Tips & Advice for Newborns (Neonatal IV Insertion)
Tips & Advice for Pediatric IV
Understanding All The IV Set Ports
Using Aseptic Technique
Venous Disorders (Chronic venous insufficiency, Deep venous thrombosis/DVT)
Vent Alarms