Electrolytes Involved in Cardiac (Heart) Conduction

You're watching a preview. 300,000+ students are watching the full lesson.
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For Electrolytes Involved in Cardiac (Heart) Conduction

Stemi Myocardial Infarction 12 Lead EKG (Image)
Normal Sinus Rhythm (Image)
10 Common EKG Heart Rhythms (Cheatsheet)
EKG Chart (Cheatsheet)
EKG Electrical Activity Worksheet (Cheatsheet)
Heart Rhythms Signs and Symptoms (Cheatsheet)
EKG Electrical vs Mechanical Worksheet (Cheatsheet)
Heart Rhythm Identification (Cheatsheet)
Sodium (Na+) Lab Value (Picmonic)
Potassium (K+) Lab Value (Picmonic)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Overview

  1. Electrolyte involvement in the heart’s conductivity
  2. Potassium and magnesium are the main intracellular electrolytes
  3. Sodium and Calcium are the main extracellular electrolytes

Nursing Points

General

  1. Extracellular positive ions
    1. Sodium (Na)
      1. Serum plasma levels
        1. 135-145 mEq/L
    2. Calcium (Ca)
      1. Serum plasma levels
        1. 8.4-10.2 mg/dL
  2. Intracellular positive ions
    1. Potassium (K)
      1. Serum plasma levels
        1. 3.5-5.0 mEq/L
    2. Magnesium (Mg)
      1. Serum plasma levels
        1. 1.6-2.6  mg/dL
  3. Action potential                                  
    1. Heart is resting
      1. Negative membrane potential
      2. Na and Ca channels open
      3. Na and Ca enter the cell
      4. Potassium exits the cell
        1. Electrical Stimulation
        2. Depolarization
    2. Contraction complete
      1. Na and Ca channels begin to close          
      2. Na and Ca exit  the cell
      3. Potassium channels open
      4. Potassium enters the cell
        1. Repolarization
  4. Electrolytes
    1. Na
      1. Initiates action potential
    2. Ca
      1. Increases the strength of contraction
    3. K
      1. Terminates action potential
    4. Mg
      1. Helps with repolarization

Assessment

  1. Electrolyte lab values
  2. Assess for dysrhythmias
    1. Ex: Hyperkalemia → Peaked T-waves

Therapeutic Management

  1. Recognize and report abnormal electrolytes
  2. Treat abnormal electrolytes promptly

Nursing Concepts

  1. EKG Rhythms
  2. Fluid & Electrolyte Balance

Patient Education

  1. Maintain adequate sodium, calcium  and potassium intake

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Transcript

Hey guys, in this lesson we will talk about the electrolytes involved in cardiac conduction.

Before we get started, please refer to Fluid and Electrolytes lesson for more detailed information regarding electrolytes, this presentation is specifically for the heart’s conduction and the electrolytes that affect it. So with that being said, let’s get started! Sodium, Potassium, Calcium and Magnesium are the major electrolytes involved in creating electricity so the heart can contract. Without a perfect balance of these electrolytes our hearts will have arrhythmias.

So let’s break down these 2 electrolytes first. Sodium is the major extracellular positive ion, it lives outside of the cell in the intercellular or intravascular space. Anything outside of the cell is extracellular, whether it’s in the vascular space or in between the cells. Normal sodium levels in the plasma are 135-145 mEq/L, this is the amount of sodium outside the cell, there is very little sodium inside the cell. Calcium also lives outside of the cell with sodium and with a positive charge. Normal plasma levels of calcium are 8.4-10.2mg/dL.
Now let’s talk about these two electrolytes. Potassium is the most important intracellular electrolytes in the body, it is positively charged and has a plasma concentration of 3.5-5.5mEq/L. It has a very high concentration inside the cell, so the concentration is less outside of the cell because potassium lives inside the cell. Magnesium is also positively charged with a concentration of 1.6-2.6mg/dL which is also inside the cell.

Now let’s break it down a little further and I am going to explain how the electrolytes actually work. Its starts when an action potential occurs, which is the movement of ions across the cell membrane. Here we have a cell, the cell is full of Potassium, , outside of the cell is Sodium and Calcium which are also positively charged. There are more positively charged cations outside of the cell versus inside of the cell. So the negativity inside the cells initiates an action potential by opening the sodium and calcium channels. This allows sodium to enter rapidly while potassium is exciting the cell, causing the cardiac cells to depolarize or contract. As the calcium enters the cell, it increases the strength of the contraction so ensure the heart pumps out all of the blood in its chambers. So after sodium and calcium have entered the cell and potassium has exited, the threshold has been reached and the heart has finished depolarizing or contracting. Potassium can begin to enter the cell again with the help of Magnesium – it inhibits potassium channels, meaning it prevents potassium from leaking out. When potassium reenters the cell, repolarization occurs. This is seen as the T wave on an EKG waveform, when there is an excessive amount of potassium the heart does not repolarize as easily, so the T wave is elevated on an EKG. So if you see an elevated T wave make sure you know what the potassium values are. As a little side note, think of a calcium channel blocker. It will block calcium from entering the cell, so it will decrease the workload of the heart and dilate arteries because when calcium enters the cell it constricts the arteries. If the channels are blocked,the calcium will not enter the cell and the arteries will dilate. This is why calcium channel blockers are given to people with hypertension and arrhythmias because it slows down the heart’s conduction, workload/oxygen demand, and dilates the arteries.

Key points to remember about these electrolytes, sodium enters the cell and initiates action potential for contraction. It is the main extracellular cation that lives outside the cell.
Calcium is also extracellular and enters the cardiac cell to increase the strength of contraction, by doing so it constricts arteries.
Potassium is the main intracellular electrolyte that exits and re-enters the cell to produce depolarization and repolarization, it also creates the T waves on an EKG
Magnesium is an intracellular cation that assists with repolarization, if mag levels are low it can produce ventricular arrhythmias, usually potassium levels are low as well because it cannot allow the potassium to stay in the cell since it cannot inhibit potassium channels. So potassium leaks out. Mag sulfate is given IV, usually with potassium replacement as well. But need to have mag first so the potassium channels are closed and potassium stays in the cells.

Make sure to check out our other lessons and resources regarding fluid and electrolytes or any other topic you may need additional help with, and as always, go out and be your best selves today and happy nursing!

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

NP4 exam1

Concepts Covered:

  • Circulatory System
  • Urinary System
  • Noninfectious Respiratory Disorder
  • Respiratory System
  • Integumentary Disorders
  • Respiratory Disorders
  • Labor Complications
  • Disorders of Pancreas
  • Pregnancy Risks
  • Cardiac Disorders
  • Eating Disorders
  • Respiratory Emergencies
  • Infectious Respiratory Disorder
  • Emergency Care of the Cardiac Patient
  • Vascular Disorders
  • Shock
  • Medication Administration
  • Upper GI Disorders
  • Fundamentals of Emergency Nursing
  • Understanding Society
  • Adulthood Growth and Development
  • Oncologic Disorders
  • Postoperative Nursing
  • Renal Disorders
  • Microbiology
  • Intraoperative Nursing
  • Shock
  • Tissues and Glands
  • Newborn Care

Study Plan Lessons

EKG (ECG) Course Introduction
Fluid & Electrolytes Course Introduction
Respiratory Course Introduction
Electrical A&P of the Heart
Respiratory A&P Module Intro
Electrolytes Involved in Cardiac (Heart) Conduction
Fluid Pressures
Lung Sounds
Alveoli & Atelectasis
Alveoli & Atelectasis
Fluid Shifts (Ascites) (Pleural Effusion)
Gas Exchange
Gas Exchange
Isotonic Solutions (IV solutions)
Hypotonic Solutions (IV solutions)
Hypertonic Solutions (IV solutions)
Preload and Afterload
Performing Cardiac (Heart) Monitoring
Lung Diseases Module Intro
The EKG (ECG) Graph
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology for Asthma
EKG (ECG) Waveforms
Sodium-Na (Hypernatremia, Hyponatremia)
Calcium-Ca (Hypercalcemia, Hypocalcemia)
Calculating Heart Rate
Nursing Care and Pathophysiology of COPD (Chronic Obstructive Pulmonary Disease)
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Nursing Care and Pathophysiology of COPD (Chronic Obstructive Pulmonary Disease)
Chloride-Cl (Hyperchloremia, Hypochloremia)
Restrictive Lung Diseases (Pulmonary Fibrosis, Neuromuscular Disorders)
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Magnesium-Mg (Hypomagnesemia, Hypermagnesemia)
Nursing Care and Pathophysiology of Acute Respiratory Distress Syndrome (ARDS)
Nursing Care and Pathophysiology for Pulmonary Edema
Phosphorus-Phos
Normal Sinus Rhythm
Normal Sinus Rhythm
Respiratory Infections Module Intro
Nursing Care and Pathophysiology for Heart Failure (CHF)
Nursing Care and Pathophysiology for Influenza (Flu)
Sinus Bradycardia
Sinus Bradycardia
Sinus Tachycardia
Sinus Tachycardia
Nursing Care and Pathophysiology for Tuberculosis (TB)
Atrial Flutter
Pacemakers
Nursing Care and Pathophysiology of Pneumonia
Atrial Fibrillation (A Fib)
Atrial Fibrillation (A Fib)
Coronavirus (COVID-19) Nursing Care and General Information
Premature Atrial Contraction (PAC)
Supraventricular Tachycardia (SVT)
Premature Ventricular Contraction (PVC)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Ventricular Fibrillation (V Fib)
1st Degree AV Heart Block
2nd Degree AV Heart Block Type 1 (Mobitz I, Wenckebach)
2nd Degree AV Heart Block Type 2 (Mobitz II)
3rd Degree AV Heart Block (Complete Heart Block)
Oxygen Delivery Module Intro
Hierarchy of O2 Delivery
Nursing Care and Pathophysiology of Hypertension (HTN)
Artificial Airways
Artificial Airways
Airway Suctioning
Airway Suctioning
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Respiratory Trauma Module Intro
Blunt Chest Trauma
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Chest Tube Management
Nursing Care and Pathophysiology for Distributive Shock
Nursing Care and Pathophysiology for Pulmonary Embolism
Respiratory Procedures Module Intro
ABG (Arterial Blood Gas) Interpretation-The Basics
ABG (Arterial Blood Gas) Oxygenation
ABG Course (Arterial Blood Gas) Introduction
ABGs Nursing Normal Lab Values
ABGs Tic-Tac-Toe interpretation Method
Acute Coronary Syndrome (ACS) Module Intro
Bariatric: IV Insertion
Base Excess & Deficit
Blood Flow Through The Heart
Bronchoscopy
Cardiac A&P Module Intro
Cardiac Anatomy
Cardiac Course Introduction
Cardiovascular Disorders (CVD) Module Intro
Chest Tube Management
Combative: IV Insertion
Coronary Circulation
Dark Skin: IV Insertion
Drawing Blood from the IV
Fluid Compartments
Geriatric: IV Insertion
Giving Medication Through An IV Set Port
Heart (Cardiac) Failure Module Intro
Heart (Cardiac) Failure Therapeutic Management
Heart (Cardiac) Sound Locations and Auscultation
Hemodynamics
Hemodynamics
How to Remove (discontinue) an IV
How to Secure an IV (chevron, transparent dressing)
Isolation Precautions (MRSA, C. Difficile, Meningitis, Pertussis, Tuberculosis, Neutropenia)
IV Catheter Selection (gauge, color)
IV Complications (infiltration, phlebitis, hematoma, extravasation, air embolism)
IV Drip Administration & Safety Checks
IV Drip Therapy – Medications Used for Drips
IV Insertion Angle
IV Insertion Course Introduction
IV Placement Start To Finish (How to Start an IV)
Lactic Acid
Lung Sounds
Maintenance of the IV
Metabolic Acidosis (interpretation and nursing diagnosis)
Metabolic Alkalosis
MI Surgical Intervention
Needle Safety
Nursing Care and Pathophysiology for Aortic Aneurysm
Nursing Care and Pathophysiology for Arterial Disorders
Nursing Care and Pathophysiology for Asthma
Nursing Care and Pathophysiology for Cardiogenic Shock
Nursing Care and Pathophysiology for Cardiomyopathy
Nursing Care and Pathophysiology for Distributive Shock
Nursing Care and Pathophysiology for Heart Failure (CHF)
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Influenza (Flu)
Nursing Care and Pathophysiology for Pneumothorax & Hemothorax
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Nursing Care and Pathophysiology for Tuberculosis (TB)
Nursing Care and Pathophysiology for Valve Disorders
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Nursing Care and Pathophysiology of Endocarditis and Pericarditis
Nursing Care and Pathophysiology of Hypertension (HTN)
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Nursing Care and Pathophysiology of Myocarditis
Nursing Care and Pathophysiology of Pneumonia
Pacemakers
Performing Cardiac (Heart) Monitoring
Positioning
Potassium-K (Hyperkalemia, Hypokalemia)
Preload and Afterload
Respiratory Acidosis (interpretation and nursing interventions)
Respiratory Alkalosis
ROME – ABG (Arterial Blood Gas) Interpretation
Selecting THE vein
Shock Module Intro
Supplies Needed
Tattoos IV Insertion
Thoracentesis
Tips & Tricks
Tips & Advice for Newborns (Neonatal IV Insertion)
Tips & Advice for Pediatric IV
Understanding All The IV Set Ports
Using Aseptic Technique
Venous Disorders (Chronic venous insufficiency, Deep venous thrombosis/DVT)
Vent Alarms