Nursing Care and Pathophysiology for Cardiomyopathy
Included In This Lesson
Study Tools For Nursing Care and Pathophysiology for Cardiomyopathy
Outline
Overview
- Abnormality of the heart muscle leads to functional changes
Pathophysiology: Dilated cardiomyopathy occurs when the myocardium will dilate, thin, and undergo hypertrophy. This is caused by viral infections, toxins, connective tissue processes, or genetics. Hypertrophic cardiomyopathy occurs when the ventricle muscle thickens and this causes contraction of the heart to be stiff. The thicking overcrowds the space so there is less space to fill and fluid backs up. Restrictive occurs when the ventricles become rigid and cannot fully stretch to fill.
Nursing Points
General
- Types
- Dilated
- 4 chambers enlarged
- Walls thin, less force
- ↓ contractility, ↓ CO
- Hypertrophic
- Thick ventricle muscle
- Stiff contraction
- Less space to fill
- ↓ Preload, ↓ CO
- Restrictive
- Ventricles rigid
- Can’t stretch to fill
- ↓ SV, ↓ CO
- Dilated
- Causes
- Prolonged untreated hypertension
- Congestive Heart Failure
- Congenital disorders
Assessment
- s/s Heart Failure
- Fatigue
- SOB
- Dysrhythmias
- Extra heart sounds (S3/S4)
- Poor perfusion
- Volume overload
- JVD
- Pulmonary Edema
- Echocardiogram or Chest X-ray
- Visibly enlarged or thickened
Therapeutic Management
- No cure, only supportive
- Encourage frequent rest
- Minimize Stress
- Manage HTN
- DASH diet
- ACE-Inhibitors
- ARB’s
- Beta Blockers
- ↓ force of contraction
- ↓ workload
- ↓ O2 demands
- Ventricular Assist Devices
- Help eject blood from LV to aorta
- Bridge to heart transplant
Patient Education
- Frequent rest periods
- Cluster activities
- Take medications as prescribed
- Monitor blood pressure
- DASH diet
- Exercise when possible
Related Lesson
ADPIE Related Lessons
Related Nursing Process (ADPIE) Lessons for Nursing Care and Pathophysiology for Cardiomyopathy
Transcript
We’re going to talk about cardiomyopathy. It’s a relatively simple topic and isn’t tested often, but if you’ve got a basic understanding of cardiac anatomy and hemodynamics, it’s really easy to understand. We can even break down the terminology here – so we know that “pathy” means disease, “myo” means muscle, and “cardio” means heart – so this is a disease of the heart muscle.
So, by definition cardiomyopathy is an abnormality of heart muscle that leads to functional changes in the heart. You can see here in this image that the muscle of the ventricles is super thick. This makes it really hard for it to contract and relax like it should. The most common causes are Hypertension and Heart Failure – the heart is working overtime and the ventricular muscle starts to change in response to that. There are three types, dilated, hypertrophic – which is what’s pictured here – and restrictive.
In dilated cardiomyopathy, you can see the muscles of the ventricles have enlarged and ballooned out. This muscle gets stretched out and really thin, like an overused rubberband. It’s so stretched that it can’t fully contract like it should. So you get decreased contractility – which leads to a decreased cardiac output.
In hypertrophic cardiomyopathy, you can see the ventricular muscle has gotten super thick. When it’s that thick it’s really stiff and doesn’t have much give. But also, you can see that the space in the ventricle where the blood would fill up is decreased. So you get a decreased preload, which of course leads to a decreased cardiac output.
Then, finally we have restrictive cardiomyopathy. In this type, the walls are normal size and it can contract okay, but the muscle is actually super rigid. Because it’s so rigid, it has NO stretch. If it can’t stretch, it struggles to fill and get a good amount of blood out to the body. So you get a decreased stroke volume and therefore a decreased cardiac output.
So dilated is a contractility problem, hypertrophic is a thick wall preload problem, and restrictive is a filling issue.
When we assess a patient with cardiomyopathy, we’re going to see those signs of heart failure – it almost mimics it. Decreased cardiac output means poor peripheral perfusion – so you’ll see the fatigue, shortness of breath, and dysrhythmias. It can also lead to volume overload because the blood is backing up so you may see JVD or pulmonary edema, or hear extra heart sounds (S3, and S4). Jump back to the heart failure lessons if you need a refresher on those symptoms. You’ll also see an enlarged heart on imaging – either in an echocardiogram or on an X-ray like this one showing how large the heart is, it’s taking up all this space here where the left lung should be. So you can imagine how they may also struggle to breathe because of this.
So when it comes to therapeutic management, one thing to note is that in most cases there’s no cure. Once the damage is done, it’s difficult to reverse. So our primary focus is on supportive care. That involves similar things we would do for a heart failure patient like encouraging rest and minimizing stress. We also want to treat their hypertension. this could be a DASH diet, ACE Inhibitors, or ARB’s, but the one that makes the most difference in this case is Beta Blockers. They will decrease the workload on the heart by decreasing force of contraction. This helps decrease the oxygen demand in the heart so it doesn’t have to keep working so hard – which could cause more damage. Then, in the late stages of cardiomyopathy, it’s possible that the patient could get a ventricular assist device like the one pictured here. The purpose is to help pull the blood out of the left ventricle and push it into the aorta since the ventricle itself is unable to do that. Usually these are used as a bridge to heart transplant.
So to sum up, cardiomyopathy is an abnormality of the heart muscle which leads to functional changes. There are three types – dilated, hypertrophic, and restrictive. Because it causes decreased cardiac output, the symptoms will mimic heart failure – poor peripheral perfusion and possibly volume overload. And finally remember there’s no real cure, we just need to provide supportive care, treat their hypertension, and manage their symptoms.
So, like we said, it’s pretty straight forward. If you understand basic cardiac physiology and hemodynamics, you can understand how this cardiac muscle disease will affect the patient. We hope you learned something! Now, go out and be your best selves today and, as always, happy nursing!
NCLEX
Concepts Covered:
- Circulatory System
- Emergency Care of the Cardiac Patient
- Cardiac Disorders
- Cardiovascular
- Shock
- Shock
- Disorders of the Posterior Pituitary Gland
- Endocrine
- Disorders of Pancreas
- Disorders of the Thyroid & Parathyroid Glands
- Hematology
- Gastrointestinal
- Upper GI Disorders
- Liver & Gallbladder Disorders
- Newborn Complications
- Lower GI Disorders
- Multisystem
- Neurological
- Nervous System
- Central Nervous System Disorders – Brain
- Renal
- Respiratory
- Urinary System
- Respiratory System
- Noninfectious Respiratory Disorder
- Test Taking Strategies
- Note Taking
- Basics of NCLEX
- Prefixes
- Suffixes
- Medication Administration
- Gastrointestinal Disorders
- Respiratory Disorders
- Pregnancy Risks
- Labor Complications
- Hematologic Disorders
- Fundamentals of Emergency Nursing
- Factors Influencing Community Health
- Delegation
- Perioperative Nursing Roles
- EENT Disorders
- Basics of Chemistry
- Adult
- Emergency Care of the Neurological Patient
- Acute & Chronic Renal Disorders
- Emergency Care of the Respiratory Patient
- Respiratory Emergencies
- Studying
- Substance Abuse Disorders
- Disorders of the Adrenal Gland
- Behavior
- Documentation and Communication
- Preoperative Nursing
- Endocrine System
- Legal and Ethical Issues
- Communication
- Understanding Society
- Immunological Disorders
- Infectious Disease Disorders
- Oncology Disorders
- Female Reproductive Disorders
- Fetal Development
- Terminology
- Anxiety Disorders
- Cognitive Disorders
- Musculoskeletal Trauma
- Intraoperative Nursing
- Tissues and Glands
- Vascular Disorders
- Renal Disorders
- Eating Disorders
- Prenatal Concepts
- Microbiology
- Male Reproductive Disorders
- Sexually Transmitted Infections
- Infectious Respiratory Disorder
- Depressive Disorders
- Personality Disorders
- Psychotic Disorders
- Trauma-Stress Disorders
- Peripheral Nervous System Disorders
- Integumentary Disorders
- Neurologic and Cognitive Disorders
- Integumentary Disorders
- Newborn Care
- Basics of Mathematics
- Statistics
- Labor and Delivery
- Proteins
- Emergency Care of the Trauma Patient
- Hematologic System
- Hematologic Disorders
- Developmental Considerations
- Skeletal System
- Digestive System
- Urinary Disorders
- Postpartum Care
- Basic
- Musculoskeletal Disorders
- Bipolar Disorders
- Metabolism
- Cardiovascular Disorders
- Concepts of Population Health
- Musculoskeletal Disorders
- EENT Disorders
- Postpartum Complications
- Basics of Human Biology
- Postoperative Nursing
- Neurological Emergencies
- Prioritization
- Disorders of Thermoregulation
- Writing
- Community Health Overview
- Dosage Calculations
- Neurological Trauma
- Concepts of Mental Health
- Health & Stress
- Endocrine and Metabolic Disorders
- Childhood Growth and Development
- Prenatal and Neonatal Growth and Development
- Concepts of Pharmacology
- Integumentary Important Points
- Emotions and Motivation
- Renal and Urinary Disorders
- Developmental Theories
- Reproductive System
- Adulthood Growth and Development
- Psychological Emergencies
- Growth & Development
- Basics of Sociology
- Somatoform Disorders
- Reading
- Intelligence and Language
- Oncologic Disorders
- Med Term Basic
- Med Term Whole
- Central Nervous System Disorders – Spinal Cord
- Muscular System
- Neonatal
- Learning Pharmacology
- Pediatric
- Psychological Disorders
- State of Consciousness
- Sensory System