Nursing Care and Pathophysiology of Diabetes Mellitus (DM)

You're watching a preview. 300,000+ students are watching the full lesson.
Nichole Weaver
MSN/Ed,RN,CCRN
Master
To Master a topic you must score > 80% on the lesson quiz.
Take Quiz

Included In This Lesson

Study Tools For Nursing Care and Pathophysiology of Diabetes Mellitus (DM)

Diabetes Mellitus Type 1- Signs & Symptoms (Mnemonic)
Diabetes Pathochart (Cheatsheet)
Endocrine System Study Chart (Cheatsheet)
Symptoms of Diabetes Mellitus (Image)
140 Must Know Meds (Book)
Diabetes Assessment (Picmonic)
Diabetes Interventions (Picmonic)
NURSING.com students have a 99.25% NCLEX pass rate.

Outline

Overview

  1. Pancreatic disorder resulting in insufficient or lack of insulin production leading to elevated blood sugar
  2. Insulin is the key to allow glucose to be used by the cells for energy

Pathophysiology:

Diabetes:

Type 1 occurs when there is an autoimmune (the body attacks the pancreas) response. The beta cells are attacked and can no longer produce and secrete insulin. Insulin is necessary to take sugar from the blood to the cells for energy. Without insulin delivery sugar to the cells, hyperglycemia (high blood sugar) occurs.

Type II DM usually occurs because of genetics and or environmental factors. In type II the pancreas either does not secrete enough insulin or has difficulty with insulin action and insulin resistance occurs in the cells. Hyperglycemia occurs because the cells are resistant to insulin or because there is not adequate insulin production/secretion. When the body can not sufficiently move sugar from the blood to the cells, blood sugars rise and hyperglycemia occurs.

Nursing Points

General

  1. Type I
    1. Immune disorder
    2. Body attacks beta cells in pancreas (responsible for insulin production)
    3. Pancreas makes NO insulin
    4. Patient is insulin-dependent
    5. Ketosis due to gluconeogenesis (body making glucose from fat cells)
  2. Type II
    1. Beta cells do not produce enough insulin for body’s needs
    2. OR – Body becomes resistant to insulin
    3. Lifestyle-related
    4. May or may not require insulin, depending on severity
  3. Coronary Artery Disease → increases morbidity & mortality

Assessment

  1. Vascular and Nerve Damage
    1. Related to inflammation and hyperosmolarity in vessels
    2. Poor circulation
    3. Poor wound healing
    4. Retinopathy → blurry vision
    5. Neuropathy → decreased sensation, especially in feet/toes
    6. Nephropathy → may result in Chronic Kidney Disease
  2. Complications
    1. Lipoatrophy
      1. Loss of SubQ fat at insulin injection site (rotate sites)
    2. Lipohypertrophy
      1. Fatty mass at insulin injection site (rotate sites)
    3. Dawn Phenomenon
      1. Reduced insulin sensitivity between 5-8am
      2. Evening insulin administration may help
    4. Somogyi Phenomenon
      1. Night time hypoglycemia results in rebound hyperglycemia in the morning hours
      2. Bedtime snack may help
    5. Diabetic Ketoacidosis (DKA)
      1. Acute exacerbation of Type I Diabetes Mellitus
      2. See DKA Lesson
    6. Hyperglycemic Hyperosmolar Nonketotic State (HHNS)
      1. Acute exacerbation of Type II Diabetes Mellitus
      2. See HHNS Lesson

Therapeutic Management

  1. See Diabetes Management Lesson

Nursing Concepts

  1. See Diabetes Management Lesson

Patient Education

  1. See Diabetes Management Lesson

 

Unlock the Complete Study System

Used by 300,000+ nursing students. 99.25% NCLEX pass rate.

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

ADPIE Related Lessons

Transcript

Okay guys, we’re going to talk about Diabetes Mellitus. Now, even if you’re brand new into nursing school, you’ve probably heard of this or know someone who has it, or have at least heard about it on the news. Diabetes is one of the leading comorbidities in the US and it’s a serious problem for our patients. In this lesson we’re going to review what happens in the patient’s body with Diabetes Mellitus, and in the next lesson we’re going to talk about what we do about it medically and in our nursing care.

So first, let’s look at the basic patho – Diabetes is an immune disorder where the body attacks the beta cells of the pancreas. Those are the cells responsible for secretion of insulin. So if the beta cells are attacked, we have either a lack of insulin or an insufficient supply of insulin for our body’s needs. So let’s remind ourselves what insulin does. Insulin is like the key that helps to unlock the cell to allow glucose to get into the cell. So you can see here, that glucose channel is closed until insulin comes in and unlocks it. Now glucose can get into the cells so they can use it for energy or ATP. If we don’t have insulin, all of this glucose will have to stay outside of the cells – so the amount of sugar left in our bloodstream will be elevated – hence our increased blood sugar levels. There are two types – Type 1 and Type 2, so let’s look at each of those a little closer.

In Type 1 Diabetes Mellitus, patients have absolutely NO insulin production. All of the beta cells in their pancreas have been destroyed and they’ve completely lost their ability to produce insulin. So, what does that mean for them? Well remember normally the insulin helps unlock the cells so that glucose can move into them. If there’s no insulin, all of this sugar just hangs out in the bloodstream and the cells get NOTHING. But cells REQUIRE glucose for energy, so they’re going to have to find it another way. That can create a lot of problems for the patient, as we’ll see in the DKA lesson. So – as you can imagine, these patients are considered insulin-dependent. This used to be called juvenile diabetes or juvenile onset diabetes, but they’ve found that it can actually develop later in life as well, so we stick to Type 1 or insulin-dependent.

In Type 2 Diabetes Mellitus, the patient is making SOME insulin…However, one of two things is happening. Either they just aren’t making enough to deal with the excess blood glucose, or, their body has become resistant to the effect of insulin. If the body is insulin resistant, then it requires much more insulin to have the same effect on the blood glucose. But, their body just isn’t providing it. So we have some cells able to get glucose, but the rest of that sugar stays out here in the bloodstream. The difference here is that the body is getting Just Enough glucose into the cells to not have to find that same workaround like Type 1 does. We’ll talk about this more in the HHNS lesson. They used to call this Adult Onset, but more and more we’re seeing children diagnosed because of poor lifestyle and eating habits. Just remember Type 1 is NO insulin, Type 2 is not enough insulin or insulin resistance. Either way, sugars can become dangerously elevated.

So there are quite a few complications of having elevated blood sugars, which we’ll continue to look at throughout this module. But, one of the big ones we want you to see is the amount of damage it can cause in the vascular system. Elevated blood sugars can cause inflammatory processes inside the vessels. They also cause a hyperosmolar state or a super concentrated state in the blood. Both that inflammation and that hyperosmolarity can do damage to the vessels as well as nerves surrounding them. So patients tend to have poor circulation, especially in the smaller vessels in the body – like in their hands and feet. That poor circulation and pro-inflammatory process can also lead to poor wound healing, so you’ll see in nursing care we’ll talk about inspecting every inch of their skin, especially on their feet and between their toes. Even the smallest wound can become massive and infected and they could lose their toe, foot, or even their leg because of it. Now, because of the damage to the small vessels and nerves, we’re also going to see neuropathy – they’ll get numbness and tingling in their hands and feet – that just makes the poor wound healing worse because they may not even be able to feel that something is wrong. We could also see retinopathy, which affects the tiny vessels in the eyes and can lead to vision loss. And finally, high blood sugars are very hard on the kidneys, so all patients with diabetes are at risk for nephropathy and ultimately chronic kidney disease if their sugars aren’t well controlled.

There are a couple of other complications that we can see, especially in patients who receive SubQ insulin therapy. Lipoatrophy is a loss of SubQ fat, remember atrophy means shrinking. Lipohypertrophy is a SubQ fat mass, remember hypertrophy means excess growth. Both of these can occur at the site of SubQ insulin injection. That’s why it’s SO important that we rotate sites when we’re administering insulin. We draw quadrants on the abdomen and rotate around, we can even further divide and rotate within the quadrants as well. We can also use the upper arms or the outer thighs. If we give insulin in the same spot multiple times in a row, it can start causing a lot of problems in that Subcutaneous tissue.

Other things we see in diabetic patients are the dawn phenomenon and the somogyi phenomenon. In the Dawn phenomenon, we see that patients tend to be less sensitive to insulin in the morning – so their sugars will be higher. We can sometimes combat this with an evening dose of insulin. In the Somogyi Phenomenon, patients who are a bit hypoglycemic at bedtime tend to have a rebound hyperglycemia and have super high sugars in the morning. For these patients we encourage a small bedtime snack. Either way, you’ll notice patients may tend to have higher sugars in the mornings than they do in the afternoon. I know, for me, as a night shift nurse it was always frustrating because they wanted the 6AM blood sugar to be under 200 or super controlled after surgery – but it was always the highest one of the day. My 9pm and 3am blood glucose levels would be fine, then I’d take the 6am and it would be 250. So this is something we need to be aware of.

Then, patients can also experience Diabetic Ketoacidosis or Hyperglycemic Hyperosmolar Nonketotic Syndrome – which will each have their own lesson, so make sure you review those.

So let’s recap. Diabetes mellitus is a condition of insufficient insulin production or action – either because all of their beta cells have been destroyed and they have NO insulin, like in Type 1, or because they just aren’t producing enough or they’re resistant to it, like in Type 2. Because the glucose can’t enter the cells to be used for energy without insulin, we see significant hyperglycemia. This hyperglycemia can lead to inflammation and hyperosmolarity in the vessels which can cause damage to the small vessels and nerves, leading to things like neuropathy, retinopathy, and poor wound healing. We want to monitor and manage their sugars closely and prevent complications by rotating injection sites, evaluating whether they need a bedtime snack or bedtime insulin, and monitoring for signs and symptoms of DKA or HHNS, which we’ll learn about later in this module.

Those are the basics of the pathophysiology and complications of Diabetes. Make sure you check out the rest of this module to learn about nursing care, as well as DKA, and HHNS. Now, go out and be your best selves today. And, as always, happy nursing!

Study Faster with Full Video Transcripts

99.25% NCLEX Pass Rate vs 88.8% National Average

200% NCLEX Pass Guarantee.
No Contract. Cancel Anytime.

Elite Access:
Private Coaching

Private Coaching 3 Private Tutoring Sessions, Lifetime Memberships, + Med-Surg Mega Kit

Wow, 3 Live Private Tutoring Sessions . . .
+ Lifetime Memberships, + Med-Surg Mega Kit.

NCLEX Prep A

Concepts Covered:

  • Test Taking Strategies
  • Respiratory Disorders
  • Prenatal Concepts
  • Prefixes
  • Suffixes
  • Disorders of the Adrenal Gland
  • Legal and Ethical Issues
  • Preoperative Nursing
  • Bipolar Disorders
  • Disorders of the Posterior Pituitary Gland
  • Hematologic Disorders
  • Immunological Disorders
  • Childhood Growth and Development
  • Medication Administration
  • Adulthood Growth and Development
  • Labor Complications
  • Disorders of the Thyroid & Parathyroid Glands
  • Pregnancy Risks
  • Cardiac Disorders
  • Learning Pharmacology
  • Anxiety Disorders
  • Basic
  • Disorders of Pancreas
  • Factors Influencing Community Health
  • Integumentary Disorders
  • Trauma-Stress Disorders
  • Oncology Disorders
  • Somatoform Disorders
  • Fundamentals of Emergency Nursing
  • Dosage Calculations
  • Depressive Disorders
  • Personality Disorders
  • Cognitive Disorders
  • Eating Disorders
  • Substance Abuse Disorders
  • Psychological Emergencies
  • Circulatory System
  • Hematologic Disorders
  • Emergency Care of the Cardiac Patient
  • Emotions and Motivation
  • Delegation
  • Vascular Disorders
  • Oncologic Disorders
  • Prioritization
  • Postpartum Complications
  • Endocrine and Metabolic Disorders
  • Basics of NCLEX
  • Fetal Development
  • Shock
  • Labor and Delivery
  • Gastrointestinal Disorders
  • Communication
  • Concepts of Mental Health
  • Health & Stress
  • Musculoskeletal Trauma
  • EENT Disorders
  • Urinary Disorders
  • Urinary System
  • Digestive System
  • Central Nervous System Disorders – Brain
  • Integumentary Disorders
  • Tissues and Glands
  • Developmental Theories
  • Postpartum Care
  • Cardiovascular Disorders
  • Renal Disorders
  • Newborn Care
  • Upper GI Disorders
  • Liver & Gallbladder Disorders
  • Renal and Urinary Disorders
  • Newborn Complications
  • Neurologic and Cognitive Disorders
  • Musculoskeletal Disorders
  • Female Reproductive Disorders
  • Infectious Disease Disorders
  • Nervous System
  • Psychotic Disorders

Study Plan Lessons

12 Points to Answering Pharmacology Questions
Care of the Pediatric Patient
Menstrual Cycle
54 Common Medication Prefixes and Suffixes
Addisons Disease
Advance Directives
Family Planning & Contraception
Vitals (VS) and Assessment
Nursing Care and Pathophysiology for Cushings Syndrome
Therapeutic Drug Levels (Digoxin, Lithium, Theophylline, Phenytoin)
Nursing Care and Pathophysiology for Diabetes Insipidus (DI)
Nursing Care and Pathophysiology for Disseminated Intravascular Coagulation (DIC)
Essential NCLEX Meds by Class
Growth & Development – Infants
6 Rights of Medication Administration
Growth & Development – Toddlers
Thrombocytopenia
Blood Transfusions (Administration)
Growth & Development – Preschoolers
Nursing Care and Pathophysiology for Hyperthyroidism
Preload and Afterload
Growth & Development – School Age- Adolescent
Nursing Care and Pathophysiology for Hypothyroidism
Legal Considerations
Performing Cardiac (Heart) Monitoring
HIPAA
The SOCK Method – Overview
The SOCK Method – S
The SOCK Method – O
The SOCK Method – C
The SOCK Method – K
Anxiety
Basics of Calculations
Brief CPR (Cardiopulmonary Resuscitation) Overview
Gestation & Nägele’s Rule: Estimating Due Dates
Nursing Care and Pathophysiology of Angina
Nursing Care and Pathophysiology of Diabetes Mellitus (DM)
Dimensional Analysis Nursing (Dosage Calculations/Med Math)
Fire and Electrical Safety
Generalized Anxiety Disorder
Gravidity and Parity (G&Ps, GTPAL)
Impetigo
Leukemia
Diabetes Management
Lymphoma
Nursing Care and Pathophysiology of Myocardial Infarction (MI)
Oral Medications
Pediculosis Capitis
Post-Traumatic Stress Disorder (PTSD)
Burn Injuries
Nursing Care and Pathophysiology of Diabetic Ketoacidosis (DKA)
Fundal Height Assessment for Nurses
Injectable Medications
Oncology Important Points
Somatoform
Nursing Care and Pathophysiology of Coronary Artery Disease (CAD)
Fall and Injury Prevention
Hyperglycaemic Hyperosmolar Non-ketotic syndrome (HHNS)
IV Infusions (Solutions)
Maternal Risk Factors
Complex Calculations (Dosage Calculations/Med Math)
Mood Disorders (Bipolar)
Depression
Isolation Precaution Types (PPE)
Paranoid Disorders
Personality Disorders
Cognitive Impairment Disorders
Eating Disorders (Anorexia Nervosa, Bulimia Nervosa)
Alcohol Withdrawal (Addiction)
Grief and Loss
Suicidal Behavior
Normal Sinus Rhythm
Physiological Changes
Sickle Cell Anemia
Nursing Care and Pathophysiology for Acquired Immune Deficiency Syndrome (AIDS)
Discomforts of Pregnancy
Nursing Care and Pathophysiology for Heart Failure (CHF)
Sinus Bradycardia
Nursing Care and Pathophysiology for Anaphylaxis
Antepartum Testing
Hemophilia
Sinus Tachycardia
Nutrition in Pregnancy
Pacemakers
Atrial Fibrillation (A Fib)
Premature Ventricular Contraction (PVC)
Ventricular Tachycardia (V-tach)
Ventricular Fibrillation (V Fib)
Maslow’s Hierarchy of Needs in Nursing
Benzodiazepines
Delegation
Nursing Care and Pathophysiology of Hypertension (HTN)
Nephroblastoma
Prioritization
Chorioamnionitis
Triage
Nursing Care and Pathophysiology for Cardiomyopathy
Gestational Diabetes (GDM)
Disseminated Intravascular Coagulation (DIC)
Ectopic Pregnancy
Nursing Care and Pathophysiology for Thrombophlebitis (clot)
Hydatidiform Mole (Molar pregnancy)
Gestational HTN (Hypertension)
Infections in Pregnancy
Preeclampsia: Signs, Symptoms, Nursing Care, and Magnesium Sulfate
Fever
Overview of the Nursing Process
Dehydration
Fetal Development
Nursing Care and Pathophysiology for Hypovolemic Shock
Nursing Care and Pathophysiology for Cardiogenic Shock
Fetal Environment
Nursing Care and Pathophysiology for Distributive Shock
Fetal Circulation
Process of Labor
Vomiting
Pediatric Gastrointestinal Dysfunction – Diarrhea
Mechanisms of Labor
Therapeutic Communication
Defense Mechanisms
Leopold Maneuvers
Celiac Disease
Fetal Heart Monitoring (FHM)
Appendicitis
Intussusception
Abuse
Constipation and Encopresis (Incontinence)
Patient Positioning
Complications of Immobility
Conjunctivitis
Prolapsed Umbilical Cord
Acute Otitis Media (AOM)
Placenta Previa
Abruptio Placentae (Placental abruption)
Tonsillitis
Preterm Labor
Urinary Elimination
Bowel Elimination
Precipitous Labor
Dystocia
Pain and Nonpharmacological Comfort Measures
Hygiene
Overview of Developmental Theories
Postpartum Physiological Maternal Changes
Bronchiolitis and Respiratory Syncytial Virus (RSV)
MAOIs
Postpartum Discomforts
Breastfeeding
Asthma
SSRIs
Cystic Fibrosis (CF)
TCAs
Congenital Heart Defects (CHD)
Intake and Output (I&O)
Defects of Increased Pulmonary Blood Flow
Blood Glucose Monitoring
Postpartum Hemorrhage (PPH)
Defects of Decreased Pulmonary Blood Flow
Mastitis
Insulin
Obstructive Heart (Cardiac) Defects
Mixed (Cardiac) Heart Defects
Specialty Diets (Nutrition)
Enteral & Parenteral Nutrition (Diet, TPN)
Histamine 1 Receptor Blockers
Initial Care of the Newborn (APGAR)
Nephrotic Syndrome
Enuresis
Newborn Physical Exam
Body System Assessments
Histamine 2 Receptor Blockers
Newborn Reflexes
Babies by Term
Cerebral Palsy (CP)
Renin Angiotensin Aldosterone System
Head to Toe Nursing Assessment (Physical Exam)
Meconium Aspiration
Meningitis
Transient Tachypnea of Newborn
Hyperbilirubinemia (Jaundice)
Spina Bifida – Neural Tube Defect (NTD)
ACE (angiotensin-converting enzyme) Inhibitors
Autism Spectrum Disorders
Attention Deficit Hyperactivity Disorder (ADHD)
Newborn of HIV+ Mother
Angiotensin Receptor Blockers
Calcium Channel Blockers
Cardiac Glycosides
Scoliosis
Metronidazole (Flagyl) Nursing Considerations
Ciprofloxacin (Cipro) Nursing Considerations
Vancomycin (Vancocin) Nursing Considerations
Anti-Infective – Penicillins and Cephalosporins
Atypical Antipsychotics
Rubeola – Measles
Mumps
Varicella – Chickenpox
Pertussis – Whooping Cough
Autonomic Nervous System (ANS)
Sympathomimetics (Alpha (Clonodine) & Beta (Albuterol) Agonists)
Parasympathomimetics (Cholinergics) Nursing Considerations
Parasympatholytics (Anticholinergics) Nursing Considerations
Diuretics (Loop, Potassium Sparing, Thiazide, Furosemide/Lasix)
Epoetin Alfa
HMG-CoA Reductase Inhibitors (Statins)
Magnesium Sulfate
NSAIDs
Corticosteroids
Hydralazine (Apresoline) Nursing Considerations
Nitro Compounds
Vasopressin
Dissociative Disorders
Eczema
Hemodynamics
Proton Pump Inhibitors
Schizophrenia
Nursing Care and Pathophysiology for SIADH (Syndrome of Inappropriate antidiuretic Hormone Secretion)